A latent factor model for highly multi-relational data Rodolphe Jenatton[†] Nicolas Le Roux^{*} Antoine Bordes[°] Guillaume Obozinski^{*} (RJ and NLR contributed equally)

One minute overview

- Method to model data of the form {subject, relation, object} • e.g., recommender system, social networks, NLP,...
- Interested in a setting with many relation types ($\geq 10^3$)
- Main idea: Learn latent representations of subjects, relations and objects combined in a trilinear model
- Scalability: Sharing sparse latent factors among relations • Good empirical performance:
- Standard tensor-factorization benchmarks Large-scale NLP application

Relational data modeling

Setting:

- n_s subjects $\{S_i\}_{i \in [[1; n_s]]}$
- n_r relations $\{\mathcal{R}_j\}_{j \in [\![1]; n_r]\!]}$
- n_o objects $\{\mathcal{O}_k\}_{k \in [[1; n_o]]}$
- A relationship exists for the triplet $(\mathcal{S}_i, \mathcal{R}_j, \mathcal{O}_k)$ if $\mathcal{R}_i(\mathcal{S}_i, \mathcal{O}_k) = 1$ • e.g., a subject and a direct object linked through a transitive verb in NLP

Goal: We want to model

$$\mathbb{P}[\mathcal{R}_i(\mathcal{S}_i, \mathcal{O}_k) = \mathbf{1}]$$

(equivalently, approximate a binary tensor $\mathbf{X} \in \{0, 1\}^{n_s \times n_o \times n_r}$)

Our approach:

- Cast the problem as matrix factorizations
- Represent the subjects and objects as vectors in \mathbb{R}^p
- $\{S_i\}_{i\in [\![1]; n_s]\!]} \to \mathbf{S} \triangleq [\mathbf{s}^1, \dots, \mathbf{s}^{n_s}] \in \mathbb{R}^{p \times n_s}$
- $\{\mathcal{O}_k\}_{k\in[\![1];n_o]\!]} \to \mathbf{O} \triangleq [\mathbf{o}^1,\ldots,\mathbf{o}^{n_o}] \in \mathbb{R}^{p \times n_o}$
- Relations are matrices on which subjects and objects operate • $\{\mathcal{R}_j\}_{j\in \llbracket 1; n_r \rrbracket} \to \{\mathbf{R}_j\}_{j\in \llbracket 1; n_r \rrbracket} \in \mathbb{R}^{p \times p}$
- A logistic model:

$$\mathbb{P}[\mathcal{R}_{j}(\mathcal{S}_{i},\mathcal{O}_{k})=1] \triangleq \sigma(\mathcal{E}(\mathbf{s}^{i},\mathbf{R}_{j},\mathbf{o}^{k})), \quad \text{with} \quad \sigma(t) \triangleq 1/(1+e^{-t})$$

Related work

- Tensor factorization methods [Tucker, 1966; Harshman et al., 1994] With latent and shared/clustered attributes:
- Collective matrix factorization [Paccanaro et al, 2001; Nickel et al., 2011] Non-parametric Bayesian [Kemp et al., 2006; Sutskever et al., 2009; Miller et al., 2009; Zhu, 2012]
- Markov-Logic networks [Kok et al., 2007]
- Neural networks [Bordes et al., 2012]

[†]CMAP, UMR CNRS 7641, Ecole Polytechnique, Palaiseau, France *INRIA-Sierra Project (INRIA/ENS/CNRS UMR 8548), 23, avenue d'Italie, 75214 Paris. France °Heudiasyc, UMR CNRS 7253, Université de Technologie de Compiègne, France

A multiple order log-odds ratio model • $\mathcal{E}(\mathbf{s}^i, \mathbf{R}_i, \mathbf{o}^k)$ accounts for 1-,2- and 3-way interactions • For instance: unigrams, bigrams and trigrams in NLP • For some parameters $\mathbf{y}, \mathbf{y}', \mathbf{z}, \mathbf{z}' \in \mathbb{R}^{p}$, we define $\mathcal{E}(\mathbf{s}^{i}, \mathbf{R}_{j}, \mathbf{o}^{k}) \triangleq \underbrace{\langle \mathbf{y}, \mathbf{R}_{j} \mathbf{y}^{\prime} \rangle}_{\text{(s}^{i}, \mathbf{R}_{j} \mathbf{z}) + \langle \mathbf{z}^{\prime}, \mathbf{R}_{j} \mathbf{o}^{k} \rangle}_{\text{(s}^{i}, \mathbf{R}_{j} \mathbf{z}) + \langle \mathbf{z}^{\prime}, \mathbf{R}_{j} \mathbf{o}^{k} \rangle} + \underbrace{\langle \mathbf{s}^{i}, \mathbf{R}_{j} \mathbf{o}^{k} \rangle}_{\text{(s}^{i}, \mathbf{R}_{j} \mathbf{z}) + \langle \mathbf{z}^{\prime}, \mathbf{z}^{\prime}, \mathbf{z}^{\prime} \rangle}_{\text{(s}^{i}, \mathbf{z}^{\prime}, \mathbf{z}^{\prime}) + \langle \mathbf{z}^{\prime}, \mathbf{z}^{\prime}, \mathbf{z}^{\prime} \rangle}$ Sharing parameters across relations Motivation: • With many relation types ($n_r \gg 1$), we might have few data per relation Relations can have similarities (e.g., synonyms in NLP) • Maybe memory expensive to store $n_r \times p^2$ elements • Idea:

• Decompose relations over a common set of *d* rank one matrices $\{\Theta_r\}_{r \in [1;d]}$

•
$$\{\Theta_r\}_{r \in [\![1;d]\!]}$$
 represent some "canonical" relation

$$egin{array}{lll} \mathbf{R}_{j} = \sum_{r=1}^{d} oldsymbol{lpha}_{r}^{j} oldsymbol{\Theta}_{r}, & ext{for solution} \ \mathbf{W}_{r} = \mathbf{U}_{r} \mathbf{V}_{r}^{ op} & ext{for solution} \end{array}$$

some sparse $\alpha^j \in \mathbb{R}^d$ some $\mathbf{u}_r, \mathbf{v}_r \in \mathbb{R}^p$

Optimization

• \mathcal{P}/\mathcal{N} is the set of indices of positively/negatively labeled relations

• We maximize the following likelihood:

$$\mathcal{L} riangleq \prod_{(i,j,k) \in \mathcal{P}} \mathbb{P}[\mathcal{R}_{j}(\mathcal{S}_{i}, \mathcal{O}_{k}) = 1] \quad \cdot \prod_{(i',j',k') \in \mathcal{N}} \mathbb{P}[\mathcal{R}_{j'}(\mathcal{S}_{i'}, \mathcal{O}_{k'}) = 0]$$

• After proper normalization, it leads to the minimization problem:

$$\min_{\substack{\mathbf{S}, \mathbf{O}, \{\alpha^j\}, \\ \{\Theta_r\} \mathbf{y}, \mathbf{y}', \mathbf{z}, \mathbf{z}'}} - \log(\mathcal{L}), \text{ with } \begin{cases} \|\alpha^j\|_1 \leq \lambda, \ \Theta_r = \mathbf{z}', \mathbf{O} = \mathbf{S}, \\ \mathbf{z} = \mathbf{z}', \mathbf{O} = \mathbf{S}, \\ \mathbf{s}^j, \mathbf{o}^k, \mathbf{y}, \mathbf{y}', \mathbf{z}, \mathbf{u}_r \end{cases}$$

- The problem is non convex
- Apply stochastic projected gradient descent
- Use mini-batches
- In some applications, the set \mathcal{N} is not given \rightarrow Sampling schemes
- Can be useful to down-weight negative triplets

- $= \mathbf{U}_r \cdot \mathbf{V}_r^+,$
- and \mathbf{v}_r in $\{\mathbf{w}; \|\mathbf{w}\|_2 \leq \mathbf{1}\}$

Experiments

- (1) <u>Multi-relational benchmarks</u>

Setting:

- Datasets: Kinships, UMLS and Nations
- Dimensions: $n_s = n_o \approx 100$ and $n_r \approx 50$
- 10 cross-validation for choices of $\{p, d, \lambda\}$
- Goal: Predict relationships

	Kinships		U	MLS	Nations		
	AUC (PR)	Log-likelihood	AUC (PR)	Log-likelihood	AUC (PR)	Log-likelihood	
Our approach	$\textbf{0.946} \pm 0.005$	$\textbf{-0.029}\pm0.001$	$\textbf{0.990} \pm 0.003$	$\textbf{-0.002}\pm0.0003$	$\textbf{0.909} \pm 0.009$	$\textbf{-0.202}\pm0.008$	
Nickel et al. (2011)	0.95	N/A	0.98	N/A	0.84	N/A	
Kok et al. (2007)	0.84	$\textbf{-0.045} \pm \textbf{0.002}$	0.98	$\textbf{-0.004} \pm \textbf{0.001}$	0.75	-0.311 ± 0.022	
Bordes et al. (2012)	$\textbf{0.907} \pm \textbf{0.008}$	N/A	$\textbf{0.983} \pm \textbf{0.003}$	N/A	$\textbf{0.883}\pm0.02$	N/A	

(2) NLP application

• Setting:

- 1,000,000/50,000/250,000 triplets for training/validation/test 30,605 subjects and direct objects/4,547 verbs
- Goal: Predict a verb given the subject and object

	synonyms not considered			best synonyms considered			
	median/mean rank	p@5	p@20	median/mean rank	p@5	p@20	
Our approach	50 / 195.0	0.78	0.95	19 / 96.7	0.89	0.98	
Bordes et al. (2012)	56 / 199.6	0.77	0.95	19 / 99.2	0.89	0.98	
Bigram	48 / 517.4	0.72	0.83	17 / 157.7	0.87	0.95	

- Human annoted dataset from [Yang et al., 2006] • 130 pairs of verbs labeled with a score in $\{0, 1, 2, 3, 4\}$
- Idea: if $\mathbf{R}_j \approx \mathbf{R}_{j'}$, then the verbs *j* and *j'* should be similar

Best WordNet

• Matlab code and datasets available at http://bit.ly/hdrl

Triplets (subject, verb, direct object) extracted from Wikipedia

• Evaluate latent representations: Lexical similarity classification

e.g., (divide, split) is labeled 4, while (postpone, show) has a score of 0