
1

Representational Power of Restricted Boltzmann

Machines and Deep Belief Networks

Nicolas Le Roux and Yoshua Bengio

Dept. IRO, Université de Montréal

C.P. 6128, Montreal, Qc, H3C 3J7, Canada

{lerouxni,bengioy}@iro.umontreal.ca

http://www.iro.umontreal.ca/∼lisa

Abstract

Deep Belief Networks (DBN) are generative neural network models with many

layers of hidden explanatory factors, recently introduced by Hinton et al., along

with a greedy layer-wise unsupervised learning algorithm. The building block of a

DBN is a probabilistic model called a Restricted Boltzmann Machine (RBM), used

to represent one layer of the model. Restricted Boltzmann Machines are interesting

because inference is easy in them, and because they have been successfully used

as building blocks for training deeper models. We first prove that adding hidden

units yields strictly improved modelling power, while a second theorem shows that

RBMs are universal approximators of discrete distributions. We then study the

question of whether DBNs with more layers are strictly more powerful in terms of

representational power. This suggests a new and less greedy criterion for training

RBMs within DBNs.

1 Introduction

Learning algorithms that learn to represent functions with many levels of composition

are said to have a deep architecture. Bengio and Le Cun (2007) discuss results in compu-

tational theory of circuits that strongly suggest that deep architectures are much more

efficient in terms of representation (number of computational elements, number of pa-

rameters) than their shallow counterparts. In spite of the fact that 2-level architectures

(e.g., a one-hidden layer neural network, a kernel machine, or a 2-level digital circuit) are

able to represent any function (see for example (Hornik, Stinchcombe, & White, 1989)),

they may need a huge number of elements and, consequently, of training examples. For

example, the parity function on d bits (which associates the value 1 with a vector v if v

has an odd number of bits equal to 1 and 0 otherwise) can be implemented by a digital

circuit of depth log(d) with O(d) elements but requires O(2d) elements to be represented

by a 2-level digital circuit (Ajtai, 1983) (e.g., in conjunctive or disjunctive normal form).

We proved a similar result for Gaussian kernel machines: they require O(2d) non-zero

coefficients (i.e., support vectors in a Support Vector Machine) to represent such highly

2

varying functions (Bengio, Delalleau, & Le Roux, 2006a). On the other hand, training

learning algorithms with a deep architecture (such as neural networks with many hid-

den layers) appears to be a challenging optimization problem (Tesauro, 1992; Bengio,

Lamblin, Popovici, & Larochelle, 2007).

Hinton, Osindero, and Teh (2006) introduced a greedy layer-wise unsupervised learning

algorithm for Deep Belief Networks (DBN). The training strategy for such networks may

hold great promise as a principle to help address the problem of training deep networks.

Upper layers of a DBN are supposed to represent more “abstract” concepts that explain

the input data whereas lower layers extract “low-level features” from the data. In (Ben-

gio et al., 2007; Ranzato, Poultney, Chopra, & LeCun, 2007), this greedy layer-wise

principle is found to be applicable to models other than DBNs. DBNs and RBMs have

already been applied successfully to a number of classification, dimensionality reduc-

tion, information retrieval, and modelling tasks (Welling, Rosen-Zvi, & Hinton, 2005;

Hinton et al., 2006; Hinton & Salakhutdinov, 2006; Bengio et al., 2007; Salakhutdinov

& Hinton, 2007).

In this paper we show that adding hidden units yields strictly improved modelling power,

unless the RBM already perfectly models the data. Then, we prove that an RBM can

model any discrete distribution, a property similar to those of neural networks with

one hidden layer. Finally, we discuss the representational power of DBNs and find a

puzzling result about the best that could be achieved when going from 1-layer to 2-layer

DBNs. Note that the proofs of universal approximation by RBMs are constructive but

3

these constructions are not practical as they would lead RBMs with potentially as many

hidden units as examples, and this would defy the purpose of using RBMs as building

blocks of a deep network that efficiently represents the input distribution. Important

theoretical questions therefore remain unanswered concerning the potential for DBNs

that stack multiple RBMs to represent a distribution efficiently.

1.1 Background on RBMs

1.1.1 Definition and properties

A Restricted Boltzmann Machine (RBM) is a particular form of the Product of Experts

model (Hinton, 1999, 2002) which is also a Boltzmann Machine (Ackley, Hinton, &

Sejnowski, 1985) with a bipartite connectivity graph. An RBM with n hidden units is

a parametric model of the joint distribution between hidden variables hi (explanatory

factors, collected in vector h and observed variables vj (the example, collected in vector

v), of the form

p(v,h) ∝ exp(−E(v,h)) = eh
T Wv+bT v+cT

h

with parameters θ = (W, b, c) and vj, hi ∈ {0, 1}. E(v,h) is called the energy of the

state (v,h). We consider here the simpler case of binary units. It is straightforward to

show that P (v|h) =
∏

j P (vj|h) and P (vj = 1|h) = sigm(bj +
∑

i Wijhi) (where sigm

is the sigmoid function defined as sigm(x) = 1
1+exp(−x)

), and P (h|v) has a similar form:

P (h|v) =
∏

i P (hi|v) and P (hi = 1|v) = sigm(ci +
∑

j Wijvj). Although the marginal

distribution p(v) is not tractable, it can be easily computed up to a normalizing constant.

4

Furthermore, one can also sample from the model distribution using Gibbs sampling.

Consider a Monte-Carlo Markov chain (MCMC) initialized with v sampled from the

empirical data distribution (distribution denoted p0). After sampling h from P (h|v),

sample v′ from P (v′|h), which follows a distribution denoted p1. After k such steps we

have samples from pk, and the model’s generative distribution is p∞ (due to convergence

of the Gibbs MCMC).

1.1.2 Training and Contrastive Divergence

Carreira-Perpiñan and Hinton (2005) showed that the derivative of the log-likelihood

of the data under the RBM with respect to the parameters is

∂ log p(v,h)

∂θ
= −

〈
∂ log E(v,h)

∂θ

〉

0

+

〈
∂ log E(v,h)

∂θ

〉

∞

(1)

where averaging is over both v and h, 〈·〉0 denotes an average with respect to p0 (the

data distribution) multiplied by P (h|v), and 〈·〉∞ denotes an average with respect to

p∞ (the model distribution): p∞(v,h) = p(v,h).

Since computing the average over the true model distribution is intractable, Hinton et al.

(2006) use an approximation of that derivative called contrastive divergence (Hinton,

1999, 2002): one replaces the average 〈·〉∞ with 〈·〉k for relatively small values of k. For

example, in Hinton et al. (2006), Hinton and Salakhutdinov (2006), Bengio et al. (2007),

Salakhutdinov and Hinton (2007), one uses k = 1 with great success. The average over

v’s from p0 is replaced by a sample from the empirical distribution (this is the usual

stochastic gradient sampling trick) and the average over v’s from p1 is replaced by a

5

single sample from the Markov chain. The resulting gradient estimator involves only

very simple computations, and for the case of binary units, the gradient estimator on

weight Wij is simply P (hi = 1|v)vj − P (hi = 1|v′)v′
j, where v′ is a sample from p1 and

v is the input example that starts the chain. The procedure can easily be generalized to

input or hidden units that are not binary (e.g., Gaussian or exponential, for continuous-

valued units (Welling et al., 2005; Bengio et al., 2007)).

2 RBMs are Universal Approximators

We will now prove that RBMs with a data-selected number of hidden units become

non-parametric and possess universal approximation properties relating them closely to

classical multilayer neural networks, but in the context of probabilistic unsupervised

learning of an input distribution.

2.1 Better Model with Increasing Number of Units

We show below that when the number of hidden units of an RBM is increased, there

are weight values for the new units that guarantee improvement in the training log-

likelihood or equivalently in the KL divergence between the data distribution p0 and the

model distribution p∞ = p. These are equivalent since

KL(p0||p) =
∑

v

p0(v) log
p0(v)

p(v)
= −H(p0) −

1

N

N∑

i=1

log p(v(i))

6

when p0 is the empirical distribution, with v(i) the ith training vector and N the number

of training vectors.

Consider the objective of approximating an arbitrary distribution p0 with an RBM. Let

p denote the distribution over visible units v obtained with an RBM that has n hidden

units and pw,c denote the input distribution obtained when adding a hidden unit with

weights w and bias c to that RBM. The RBM with this extra unit has the same weights

and biases for all other hidden units, and the same input biases.

Lemma 2.1. Let Rp be the equivalence class containing the RBMs whose associated

marginal distribution over the visible units is p. The operation of adding a hidden unit

to an RBM of Rp preserves the equivalence class. Thus, the set of RBMs composed of

an RBM of Rp and an additional hidden unit is also an equivalence class (meaning that

all the RBMs of this set have the same marginal distribution over visible units).

Proof in appendix.

Rp will be used here to denote any RBM in this class. We also define Rpw,c
as the set of

RBMs obtained by adding a hidden unit with weight w and bias c to an RBM from Rp

and pw,c the associated marginal distribution over the visible units. As demonstrated in

the above lemma, this does not depend on which particular RBM from Rp we choose.

We then wish to prove, that, regardless p and p0, if p 6= p0, there exists a pair (w, c)

such that KL(p0||pw,c) < KL(p0||p), i.e., that one can improve the approximation of p0

by inserting an extra hidden unit with weight vector w and bias c.

7

We will first state a trivial lemma needed for the rest of the proof. It says that inserting

a unit with bias c = −∞ does not change the input distribution associated with the

RBM.

Lemma 2.2. Let p be the distribution over binary vectors v in {0, 1}d, obtained with

an RBM Rp and let pw,c be the distribution obtained when adding a hidden unit with

weights w and bias c to Rp. Then

∀p, ∀w ∈ R
d, p = pw,−∞

Proof. Denoting h̃ =




h

hn+1


, W̃ =




W

wT


 and C̃ =




C

c


 where wT denotes the

transpose of w and introducing z(v,h) = exp(hT Wv + BT v + CTh), we can express

p(v,h) and pw,c(v, h̃) as follows:

p(v,h) ∝ z(v,h)

pw,c(v, h̃) ∝ exp
(
h̃T W̃v + BTv + C̃T h̃

)

∝ z(v,h) exp
(
hn+1w

Tv + chn+1

)

If c = −∞, pw,c(v, h̃) = 0 if hn+1 = 1. Thus, we can discard all terms where hn+1 = 1,

8

keeping only those where hn+1 = 0. Marginalizing over the hidden units, we have:

p(v) =

∑
h
z(v,h)∑

h(0),v0 z(v0,h(0))

pw,−∞(v) =

∑
eh z(v,h) exp

(
hn+1w

Tv + chn+1

)
∑

g
h(0),v0

z(v0,h(0)) exp
(
h

(0)
n+1w

Tv + ch
(0)
n+1

)

=

∑
h
z(v,h) exp(0)∑

h(0),v0 z(v0,h(0)) exp(0)

= p(v)

We now state the main theorem.

Theorem 2.3. Let p0 be an arbitrary distribution over {0, 1}n and let Rp be an RBM

with marginal distribution p over the visible units such that KL(p0||p) > 0. Then there

exists an RBM Rpw,c
composed of Rp and an additional hidden unit with parameters

(w, c) whose marginal distribution pw,c over the visible units achieves KL(p0||pw,c) <

KL(p0||p).

Proof in appendix.

2.2 A Huge Model can Represent Any Distribution

The second set of results are for the limit case when the number of hidden units is very

large, so that we can represent any discrete distribution exactly.

9

Theorem 2.4. Any distribution over {0, 1}n can be approximated arbitrarily well (in

the sense of the KL divergence) with an RBM with k + 1 hidden units where k is the

number of input vectors whose probability is not 0.

Proof sketch (Universal approximator property). We constructively build an RBM with

as many hidden units as the number of input vectors whose probability is strictly pos-

itive. Each hidden unit will be assigned to one input vector. Namely, when vi is the

visible units vector, all hidden units have a probability 0 of being on except the one

corresponding to vi which has a probability sigm(λi) of being on. The value of λi is

directly tied with p(vi). On the other hand, when all hidden units are off but the ith

one, p(vi|h) = 1. With probability 1 − sigm(λi), all the hidden units are turned off,

which yields independent draws of the visible units. The proof consists in finding the

appropriate weights (and values λi) to yield that behaviour.

Proof in appendix.

3 Representational power of Deep Belief Networks

3.1 Background on Deep Belief Networks

A DBN with ` layers models the joint distribution between observed variables vj and `

hidden layers h(k), k = 1, . . . , ` made of binary units h
(k)
i (here all binary variables), as

10

follows:

p(v,h(1),h(2), . . . ,h(`)) = P (v|h(1))P (h(1)|h(2)) . . . P (h(`−2)|h(`−1))p(h(`−1),h(`))

Denoting v = h(0), b(k) the bias vector of layer k and W (k) the weight matrix between

layer k and layer k + 1, we have:

P (h(k)|h(k+1)) =
∏

i

P (h
(k)
i |h(k+1)) (factorial conditional distribution)

P (h
(k)
i = 1|h(k+1)) = sigm

(
b
(k)
i +

∑

j

W
(k)
ij h

(k+1)
j

)
(2)

and p(h(`−1),h(`)) is an RBM.

The original motivation found in Hinton et al. (2006) for having a deep network versus

a single hidden layer (i.e., a DBN versus an RBM) was that the representational power

of an RBM would be too limited and that more capacity could be achieved by having

more hidden layers. However, we have found here that an RBM with enough hidden

units can model any discrete distribution. Another motivation for deep architectures is

discussed in Bengio and Le Cun (2007) and Bengio et al. (2007): deep architectures can

represent functions much more efficiently (in terms of number of required parameters)

than shallow ones. In particular, theoretical results on circuit complexity theory prove

that shallow digital circuits can be exponentially less efficient than deeper ones (Ajtai,

1983; Hastad, 1987; Allender, 1996). Hence the original motivation (Hinton et al., 2006)

was probably right when one considers the restriction to reasonably sized models.

11

3.2 Trying to Anticipate a High-Capacity Top Layer

In the greedy training procedure of Deep Belief Networks proposed in (Hinton et al.,

2006), one layer is added on top of the network at each stage, and only that top layer

is trained (as an RBM, see figure 1). In that greedy phase, one does not take into

account the fact that other layers will be added next. Indeed, while trying to optimize

the weights, we restrict the marginal distribution over its hidden units to be the one

induced by the RBM. On the contrary, when we add a new layer, that distribution (which

is the marginal distribution over the visible units of the new RBM) does not have that

restriction (but another one which is to be representable by an RBM of a given size).

Thus, we might be able to better optimize the weights of the RBM, knowing that the

marginal distribution over the hidden units will have more freedom when extra layers

are added. This would lead to an alternative training criterion for DBNs.

Consider a 2-layer DBN (` = 2, that is with three layers in total). To train the weights

between h(1) and h(2) (see figure 1), the greedy strategy maximizes a lower bound

on the likelihood of the data (instead of the likelihood itself), called the variational

bound (Hinton et al., 2006):

log p(v) ≥
∑

h(1)

Q(h(1)|v)
[
log p(h(1)) + log P (v|h(1))

]

−
∑

h(1)

Q(h(1)|v) log Q(h(1)|v) (3)

where

• Q(h(1)|v) is the posterior on hidden units h(1) given visible vector v, according to

12

v

h(1)

RBM

(a) Stage 1

v

h(1)

h(2)

RBM

W(1)

(b) Stage 2

v

h(1)

h(2)

h(3)

RBM

W(1)

W(2)

(c) Stage 3

Figure 1: Greedy learning of an RBM. After each RBM has been trained, the weights

are frozen and a new layer is added. The new layer is trained as an RBM.

the first RBM model, and is determined by W (1). It is the assumed distribution

used in the variational bound on the DBN likelihood.

• p(h(1)) is the marginal distribution over h1 in the DBN (thus induced by the second

RBM, between h(1) and h(2))

• P (v|h(1)) is the posterior over v given h1 in the DBN and in the first RBM, and

is determined by W (1).

Once the weights of the first layer (W (1)) are frozen, the only element that can be opti-

mized is p(h(1)). We can show that there is an analytic formulation for the distribution

p∗(h(1)) that maximizes this variational bound:

p∗(h(1)) =
∑

v

p0(v)Q(h(1)|v) (4)

13

where p0 is the empirical distribution of input examples. One can sample from p∗(h(1))

by first randomly sampling a v from the empirical distribution and then propagating

it stochastically through Q(h(1)|v). Using theorem 2.4, there exists an RBM that can

approximate this optimal distribution p∗(h(1)) arbitrarily well.

Using an RBM that achieves this “optimal” p∗(h(1)) (optimal in terms of the variational

bound, but not necessarily with respect to the likelihood), we can determine the distri-

bution represented by DBN. Let p1 be the distribution one obtains when starting from

p0 clamped in the visible units of the lower layer (v), sampling the hidden units h(1)

given v and then sampling a v given h(1).

Proposition 3.1. In a 2-layer DBN, using a second layer RBM achieving p∗(h(1)), the

model distribution p is equal to p1.

This is equivalent to making one “up-down” in the first RBM trained.

Proof. We can write the marginal p∗(h(1)) by summing over hidden values h̃0:

p∗(h(1)) =
∑

h̃0

p0(h̃
0)Q(h(1)|h̃0).

Thus, the probability of the data under the 2-layer DBN when the top-layer RBM

achieves p∗(h(1)) is

p(h(0)) =
∑

h(1)

P (h(0)|h(1))p∗(h(1)) (5)

=
∑

h̃0

p0(h̃
0)
∑

h(1)

Q(h(1)|h̃0)P (h(0)|h(1))

p(h(0)) = p1(h
(0)) (6)

14

The last line can be seen to be true by considering the stochastic process of first picking

an h̃0 from the empirical distribution p0, then sampling an h(1) from Q(h(1)|h̃0), and

finally computing the probability of h(0) under P (h(0)|h(1)) for that h(1).

Proposition 3.1 tells us that, even with the best possible model for p(h(1),h(2)) according

to the variational bound (i.e., the model that can achieve p∗(h(1))), we obtain a KL

divergence between the DBN and the data equal to KL(p0||p1). Hence if we train the

2nd level RBM to model the stochastic output of the 1st level RBM (as suggested

in Hinton et al. (2006)), the best KL(p0||p) we can achieve with model p of the 2-level

DBN cannot be better than KL(p0||p1). Note that this result does not preclude that a

better likelihood could be achieved with p if a better criterion is used to train the 2nd

level RBM.

For KL(p0||p1) to be 0, one should have p0 = p1. Note that a weight vector with this

property would not only be a fixed point of KL(p0||p1) but also of the likelihood and of

contrastive divergence for the first-level RBM. p0 = p1 could have been obtained with a

one-level DBN (i.e., a single RBM) that perfectly fits the data. This can happen when

the first RBM has infinite weights i.e., is deterministic, and just encodes h(0) = v in h(1)

perfectly. In that case the second layer h(2) seems useless.

Does that mean that adding layers is useless? We believe the answer is no; first, even

though having the distribution that maximizes the variational bound yields p = p1, this

does not mean that we cannot achieve KL(p0||p) < KL(p0||p1) with a 2-layer DBN

(though we have no proof that it can be achieved either). Indeed, since the variational

15

bound is not the quantity we truly want to optimize, another criterion might lead to a

better model (in terms of the likelihood of the data). Besides that, even if adding layers

does not allow us to perfectly fit the data (which might actually only be the case when we

optimize the variational bound rather than the likelihood), the distribution of the 2-layer

DBN is closer to the empirical distribution than is the first layer RBM (we do only one

“up-down” Gibbs step instead of doing an infinite number of such steps). Furthermore,

the extra layers allow us to regularize and hopefully obtain a representation in which even

a very high capacity top layer (e.g., a memory-based non-parametric density estimator)

could generalize well. This approach suggests using alternative criteria to train DBNs,

that approximate KL(p0||p1) and can be computed before h(2) is added, but, unlike

contrastive divergence, take into account the fact that more layers will be added later.

Note that computing KL(p0||p1) exactly is intractable in an RBM because it involves

summing over all possible values of the hidden vector h. One could use a sampling

or mean-field approximation (replacing the summation over values of the hidden unit

vector by a sample or a mean-field value), but even then there would remain a double

sum over examples:
N∑

i=1

1

N
log

N∑

j=1

1

N
P̂ (V 1 = vi|V

0 = vj)

where vi denotes the i-th example and P̂ (V 1 = vi|V
0 = vj) denotes an estimator of

the probability of observing V 1 = vi at iteration 1 of the Gibbs chain (that is after

a “up-down” pass) given that the chain is started from V 0 = vj. We write P̂ rather

than P because computing P exactly might involve an intractable summation over all

16

possible values of h. In Bengio et al. (2007), the reconstruction error for training an

auto-encoder corresponding to one layer of a deep network is log P̂ (V 1 = vi|V
0 = vi).

Hence log P̂ (V 1 = vi|V
0 = vj) is like a reconstruction error when one tries to reconstruct

or predict vi according to P (vi|h) when starting from vj, sampling h from P (h|vj).

This criterion is essentially the same as one already introduced in a different context

in (Bengio, Larochelle, & Vincent, 2006b), where P̂ (V 1 = vi|V
0 = vj) is computed

deterministically (no hidden random variable is involved), and the inner sum (over vj’s)

is approximated by using only the 5 nearest neighbours of vi in the training set. However,

the overall computation time in (Bengio et al., 2006b) is O(N 2) because like most non-

parametric learning algorithms it involves comparing all training examples with each

other. In contrast, the contrastive divergence gradient estimator can be computed in

O(N) for a training set of size N .

To evaluate whether tractable approximations of KL(p0||p1) would be worth investigat-

ing, we performed an experiment on a toy dataset and toy model where the computations

are feasible. The data are 10-element bit vectors with patterns of 1, 2 or 3 consecutive

ones (or zeros) against a background of zeros (or ones), demonstrating simple shift in-

variance. There are 60 possible examples (p0), 40 of which are randomly chosen to train

first an RBM with 5 binomial hidden units, and then a 2-layer DBN. The remaining

20 are a test set. The second RBM has 10 hidden units (so that we could guarantee

improvement of the likelihood by the addition of the second layer). The first RBM is ei-

ther trained by contrastive divergence or to minimize KL(p0||p1), using gradient descent

17

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400 450 500

KL
-d

iv-
to

-p
0

stage

CD-DBN(train)
KLp0p1-DBN(train)

CD-DBN(test)
KLp0p1-DBN(test)

Figure 2: KL divergence w.r.t. number epochs after adding the 2nd level RBM, between

empirical distribution p0 (either training or test set) and (top curves) DBN trained

greedily with contrastive divergence at each layer, or (bottom curves) DBN trained

greedily with KL(p0||p1) on the 1st layer, and contrastive divergence on the 2nd.

and a learning rate of 0.1 for 500 epochs (parameters are updated after each epoch).

Other learning rates and random initialization seeds gave similar results, diverged, or

converged slower. The second RBM is then trained for the same number of epochs, by

contrastive divergence with the same learning rate. Figure 2 shows the exact KL(p0||p)

of the DBN p while training the 2nd RBM. The advantage of the KL(p0||p1) training

is clear. This suggests that future research should investigate tractable approximations

of KL(p0||p1).

18

3.3 Open Questions on DBN Representational Power

The results described in the previous section were motivated by the following question:

since an RBM can represent any distribution, what can be gained by adding layers to

a DBN, in terms of representational power? More formally, let Rn
` be a Deep Belief

Network with ` + 1 hidden layers, each of them composed of n units. Can we say

something about the representational power of Rn
` as ` increases? Denoting Dn

` the

set of distributions one can obtain with Rn
` , it follows from the unfolding argument

in Hinton et al. (2006) that Dn
` ⊆ Dn

`+1. The unfolding argument shows that the last

layer of an `-layer DBN corresponds to an infinite directed graphical model with tied

weights. By untying the weights in the (` + 1)-th RBM of this construction from those

above, we obtain an (` + 1)-layer DBN. Hence every element of Dn
` can be represented

in Dn
`+1. Two questions remain:

• do we have Dn
` ⊂ Dn

`+1, at least for ` = 1?

• what is Dn
∞?

4 Conclusions

We have shown that when the number of hidden units is allowed to vary, Restricted

Boltzmann Machines are very powerful and can approximate any distribution, eventually

representing them exactly when the number of hidden units is allowed to become very

large (possibly 2 to the number of inputs). This only says that parameter values exist

19

for doing so, but it does not prescribe how to obtain them efficiently. In addition, the

above result is only concerned with the case of discrete inputs. It remains to be shown

how to extend that type of result to the case of continuous inputs.

Restricted Boltzmann Machines are interesting chiefly because they are the building

blocks of Deep Belief Networks, which can have many layers and can theoretically be

much more efficient at representing complicated distributions (Bengio & Le Cun, 2007).

We have introduced open questions about the expressive power of Deep Belief Networks.

We have not answered these questions, but in trying to do so, we obtained an apparently

puzzling result concerning Deep Belief Networks: the best that can be achieved by

adding a second layer (with respect to some bound) is limited by the first layer’s ability

to map the data distribution to something close to itself (KL(p0||p1)), and this ability

is good when the first layer is large and models well the data. So why do we need the

extra layers? We believe that the answer lies in the ability of a Deep Belief Network to

generalize better by having a more compact representation. This analysis also suggests

to investigate KL(p0||p1) (or an efficient approximation of it) as a less greedy alternative

to contrastive divergence for training each layer, because it would take into account that

more layers will be added.

Acknowledgements

The authors would like to thank the following funding organizations for support:

NSERC, MITACS, and the Canada Research Chairs. They are also grateful for the

20

help and comments from Olivier Delalleau and Aaron Courville.

References

Ackley, D., Hinton, G., & Sejnowski, T. (1985). A learning algorithm for Boltzmann

machines. Cognitive Science, 9.

Ajtai, M. (1983).
∑1

1-formulae on finite structures. Annals of Pure and Applied Logic,

24 (1), 48.

Allender, E. (1996). Circuit complexity before the dawn of the new millennium. In

16th Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, pp. 1–18. Lecture Notes in Computer Science 1180.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise

training of deep networks. In Schölkopf, B., Platt, J., & Hoffman, T. (Eds.),

Advances in Neural Information Processing Systems 19. MIT Press.

Bengio, Y., Delalleau, O., & Le Roux, N. (2006a). The curse of highly variable functions

for local kernel machines. In Weiss, Y., Schölkopf, B., & Platt, J. (Eds.), Advances

in Neural Information Processing Systems 18, pp. 107–114. MIT Press, Cambridge,

MA.

Bengio, Y., Larochelle, H., & Vincent, P. (2006b). Non-local manifold parzen windows.

21

In Weiss, Y., Schölkopf, B., & Platt, J. (Eds.), Advances in Neural Information

Processing Systems 18, pp. 115–122. MIT Press.

Bengio, Y., & Le Cun, Y. (2007). Scaling learning algorithms towards AI. In Bottou,

L., Chapelle, O., DeCoste, D., & Weston, J. (Eds.), Large Scale Kernel Machines.

MIT Press.

Carreira-Perpiñan, M., & Hinton, G. (2005). On contrastive divergence learning. In

Proceedings of the Tenth International Workshop on Artificial Intelligence and

Statistics, Jan 6-8, 2005, Savannah Hotel, Barbados.

Hastad, J. T. (1987). Computational Limitations for Small Depth Circuits. MIT Press.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief

nets. Neural Computation, 18, 1527–1554.

Hinton, G. (2002). Training products of experts by minimizing contrastive divergence.

Neural Computation, 14, 1771–1800.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with

neural networks. Science, 313 (5786), 504–507.

Hinton, G. (1999). Products of experts. In Proceedings of the Ninth International

Conference on Artificial Neural Networks (ICANN), Vol. 1, pp. 1–6.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural Networks, 2, 359–366.

22

Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of

sparse representations with an energy-based model. In Schölkopf, B., Platt, J., &

Hoffman, T. (Eds.), Advances in Neural Information Processing Systems 19. MIT

Press.

Salakhutdinov, R., & Hinton, G. (2007). Learning a nonlinear embedding by preserving

class neighbourhood structure. In To Appear in Proceedings of AISTATS’2007.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,

8, 257–277.

Welling, M., Rosen-Zvi, M., & Hinton, G. (2005). Exponential family harmoniums with

an application to information retrieval. In Saul, L., Weiss, Y., & Bottou, L. (Eds.),

Advances in Neural Information Processing Systems 17. MIT Press.

23

5 Appendix

5.1 Proof of Lemma 2.1

Proof. Denoting h̃ =




h

hn+1


, W̃ =




W

wT


 and C̃ =




C

c


 where wT denotes the

transpose of w and introducing z(v,h) = exp(hT Wv + BT v + CTh), we can express

p(v,h) and pw,c(v, h̃) as follows:

p(v,h) ∝ z(v,h)

pw,c(v, h̃) ∝ exp
(
h̃T W̃v + BTv + C̃T h̃

)

∝ z(v,h) exp
(
hn+1w

Tv + chn+1

)

Expanding the expression of pw,c(v) and regrouping the terms similar to the expression

of p(v), we get:

pw,c(v) =

∑
eh exp

(
hT Wv + hn+1w

Tv + BTv + CTh + chn+1

)
∑

g
h(0),v0

exp
(
h(0)T Wv0 + h

(0)
n+1w

Tv0 + BTv0 + CTh(0) + ch
(0)
n+1

)

=

∑
h
z(v,h)

(
1 + exp

(
wTv + c

))
∑

h(0),v0 z(v0,h(0)) (1 + exp (wTv0 + c))

=

(
1 + exp

(
wTv + c

))∑
h
z(v,h)∑

v0 (1 + exp (wTv0 + c))
∑

h0 z(v0,h(0))

But
∑

h z(v,h) = p(v)K with K =
∑

v,h z(v,h). Thus,

pw,c(v) =

(
1 + exp

(
wTv + c

))
p(v)∑

v0 (1 + exp (wTv0 + c)) p(v0)

which does not depend on our particular choice of Rp (since it does only depend on p).

24

5.2 Proof of theorem 2.3

Proof. Expanding the expression of pw,c(v) and regrouping the terms similar to the

expression of p(v), we get:

pw,c(v) =

∑
eh exp

(
hT Wv + hn+1w

Tv + BTv + CTh + chn+1

)
∑

g
h(0),v0

exp
(
h(0)T Wv0 + h

(0)
n+1w

Tv0 + BTv0 + CTh(0) + ch
(0)
n+1

)

=

∑
h
z(v,h)

(
1 + exp

(
wTv + c

))
∑

h(0),v0 z(v0,h(0)) (1 + exp (wTv0 + c))

=

(
1 + exp

(
wTv + c

))∑
h
z(v,h)∑

v0,h(0) (1 + exp (wTv0 + c)) z(v0,h(0))

Therefore, we have:

KL(p0||pw,c) =
∑

v

p0(v) log p0(v) −
∑

v

p0(v) log pw,c(v)

= −H(p0) −
∑

v

p0(v) log

((
1 + exp

(
wTv + c

))∑
h
z(v,h)∑

v0,h(0) (1 + exp (wTv0 + c)) z(v0,h(0))

)

= −H(p0) −
∑

v

p0(v) log
(
1 + exp

(
wTv + c

))
−
∑

v

p0(v) log

(
∑

h

z(v,h)

)

+
∑

v

p0(v) log


 ∑

v0,h(0)

(
1 + exp

(
wTv0 + c

))
z(v0,h(0))




Assuming wTv + c is a very large negative value for all v, we can use the logarithmic

series identity around 0 (log(1 + x) = x + ox→0(x)) for the second and the last term.

The second term becomes1

∑

v

p0(v) log
(
1 + exp

(
wTv + c

))
=
∑

v

p0(v) exp
(
wTv + c

)
+ oc→−∞ (exp(c))

1ox→∞() notation: f(x) = ox→+∞ (g(x)) if limx→+∞

f(x)
g(x) exists and equals 0.

25

and the last term becomes

(
∑

v

p0(v)

)
log


 ∑

v0,h(0)

(
1 + exp

(
wTv0 + c

))
z(v0,h(0))




= log


 ∑

v0,h(0)

z(v0,h(0))


 + log

(
1 +

∑
v0,h(0) exp

(
wTv0 + c

)
z(v0,h(0))∑

v0,h(0) z(v0,h(0))

)

= log


 ∑

v0,h(0)

z(v0,h(0))


 +

∑
v0,h(0) exp

(
wTv0 + c

)
z(v0,h(0))∑

v0,h(0) z(v0,h(0))
+ oc→−∞ (exp(c))

But

∑
v0,h(0) exp

(
wTv0 + c

)
z(v0,h(0))∑

v0,h(0) z(v0,h(0))
=

∑

v

exp
(
wTv + c

) ∑
h(0) z(v,h(0))∑

v0,h(0) z(v0,h(0))

=
∑

v

exp
(
wTv + c

)
p(v)

Putting all terms back together, we have

KL(p0||pw,c) = −H(p0) −
∑

v

p0(v) exp
(
wTv + c

)
+
∑

v

p(v) exp
(
wTv + c

)
+ oc→−∞ (exp(c))

−
∑

v

p0(v) log

(
∑

h

z(v,h)

)
+ log


 ∑

v0,h(0)

z(v0,h(0))




= KL(p0||p) +
∑

v

exp
(
wTv + c

)
(p(v) − p0(v)) + oc→−∞ (exp(c))

Finally, we have

KL(p0||pw,c) − KL(p0||p) = exp(c)
∑

v

exp
(
wTv

)
(p(v) − p0(v)) + oc→−∞ (exp(c)) (7)

The question now becomes: can we find a w such that
∑

v
exp

(
wTv

)
(p(v) − p0(v)) is

negative?

As p0 6= p, there is a v̂ such that p(v̂) < p0(v̂). Then there exists a positive scalar a

such that ŵ = a

(
v̂ −

1

2
e

)
(with e = [1 . . . 1]T) yields

∑
v

exp
(
ŵTv

)
(p(v) − p0(v)) < 0.

26

Indeed, for v 6= v̂, we have

exp(ŵTv)

exp(ŵT v̂)
= exp

(
ŵT (v − v̂)

)

= exp

(
a

(
v̂ −

1

2
e

)T

(v − v̂)

)

= exp

(
a
∑

i

(
v̂i −

1

2

)
(vi − v̂i)

)

For i such that vi − v̂i > 0, we have vi = 1 and v̂i = 0. Thus, v̂i −
1
2

= −1
2

and the term

inside the exponential is negative (since a is positive). For i such that vi − v̂i < 0, we

have vi = 0 and v̂i = 1. Thus, v̂i −
1
2

= 1
2

and the term inside the exponential is also

negative. Furthermore, the terms come close to 0 as a goes to infinity. Since the sum

can be decomposed as

∑

v

exp
(
ŵTv

)
(p(v) − p0(v)) = exp(ŵT v̂)

(
∑

v

exp
(
ŵTv

)

exp(ŵT v̂)
(p(v) − p0(v))

)

= exp(ŵT v̂)


p(v̂) − p0(v̂) +

∑

v 6=bv

exp
(
ŵTv

)

exp(ŵT v̂)
(p(v) − p0(v))




we have2

∑

v

exp
(
ŵTv

)
(p(v) − p0(v)) ∼a→+∞ exp(ŵT v̂)(p(v̂) − p0(v̂)) < 0.

Therefore, there is a value â such that, if a > â,
∑

v
exp

(
wTv

)
(p(v) − p0(v)) < 0. This

concludes the proof.

2∼x→∞ notation: f(x) ∼x→+∞ g(x) if limx→+∞

f(x)
g(x) exists and equals 1.

27

5.3 Proof of theorem 2.4

Proof. In the former proof, we had

pw,c(v) =

(
1 + exp

(
wTv + c

))∑
h
z(v,h)∑

v0,h(0) (1 + exp (wTv0 + c)) z(v0,h(0))

Let ṽ be an arbitrary input vector and ŵ be defined in the same way as before, i.e.

ŵ = a

(
ṽ −

1

2

)
.

Now define ĉ = −ŵT ṽ + λ with λ ∈ R. We have:

lim
a→∞

1 + exp(ŵTv + ĉ) = 1 for v 6= ṽ

1 + exp(ŵT ṽ + ĉ) = 1 + exp(λ)

Thus, we can see that, for v 6= ṽ:

lim
a→∞

p bw,bc(v) =

∑
h
z(v,h)∑

v0 6=ṽ,h(0) z(v0,h(0)) +
∑

h(0) (1 + exp (ŵT ṽ + ĉ)) z(ṽ,h(0))

=

∑
h
z(v,h)∑

v0,h(0) z(v0,h(0)) +
∑

h(0) exp (λ) z(ṽ,h(0))

=

∑
h
z(v,h)∑

v0,h(0) z(v0,h(0))

1

1 + exp(λ)
P

h
(0) z(ṽ,h(0))

P
v0,h(0) z(v0,h(0))

Remembering p(v) =

∑
h
z(v,h)∑

v0,h(0) z(v0,h(0))
, we have for v 6= ṽ:

lim
a→∞

p bw,bc(v) =
p(v)

1 + exp(λ)p(ṽ)
(8)

Similarly, we can see that

lim
a→∞

p bw,bc(ṽ) =
[1 + exp(λ)]p(ṽ)

1 + exp(λ)p(ṽ)
(9)

28

Depending on the value of λ, one can see that adding a hidden unit allows one to

increase the probability of an arbitrary ṽ and to uniformly decrease the probability of

every other v by a multiplicative factor. However, one can also see that, if p(ṽ) = 0,

then p bw,bc(ṽ) = 0 for all λ.

We can therefore build the desired RBM as follows. Let us index the v’s over the integers

from 1 to 2n and sort them such that

p0(vk+1) = . . . = p0(v2n) = 0 < p0(v1) ≤ p0(v2) ≤ . . . ≤ p0(vk)

Let us denote pi the distribution of an RBM with i hidden units. We start with an

RBM whose weights and biases are all equal to 0. The marginal distribution over the

visible units induced by that RBM is the uniform distribution. Thus,

p0(v1) = . . . = p0(v2n) = 2−n

We define w1 = a1(v1 −
1
2
) and c1 = −wT

1 v1 + λ1.

As shown before, we now have:

lim
a1→+∞

p1(v1) =
[1 + exp(λ1)]2

−n

1 + exp(λ1)2−n

lim
a1→+∞

p1(vi) =
2−n

1 + exp(λ1)2−n
∀i ≥ 2

As we can see, we can set p1(v1) to a value arbitrarily close to 1, with a uniform

distribution over v2, . . . ,v2n . Then, we can choose λ2 such that
p2(v2)

p2(v1)
=

p(v2)

p(v1)
. This is

possible since we can arbitrarily increase p2(v2) while multiplying the other probabilities

by a constant factor and since
p(v2)

p(v1)
≥

p1(v2)

p1(v1)
. We can continue the procedure until

29

obtaining pk(vk). The ratio
pi(vj)

pi(vj−1)
does not depend on the value of i as long as i > j

(because at each such step i, the two probabilities are multiplied by the same factor).

We will then have

pk(vk)

pk(vk−1)
=

p(vk)

p(vk−1)
, . . . ,

pk(v2)

pk(v1)
=

p(v2)

p(v1)

pk(vk+1) = . . . = pk(v2n)

From that, we can deduce that pk(v1) = νkp(v1), . . . , p
k(vk) = νkp(vk) with νk =

1 − (2n − k)pk(v2n).

We also have
pk(v1)

pk(v2n)
=

p1(v1)

p1(v2n)
= 1 + exp(λ1).

Thus, pk(v1) = p(v1)[1 − (2n − k)pk(v2n)] = (1 + exp(λ1))p
k(v2n).

Solving the above equations, we have

pk(vi) = p(v1)
1+exp(λ1)+p(v1)(2n−k)

for i > k (10)

pk(vi) = p(vi)
1+exp(λ1)

1+exp(λ1)+p(v1)(2n−k)
for i ≤ k (11)

Using the logarithmic series identity around 0 (log(1 + x) = x + ox→0(x)) for KL(p||pk)

when λ1 goes to infinity, we have

KL(p||pk) =
∑

i

p(vi)
(2n − k)p(vi)

1 + exp(λ1)
+ o(exp(−λ1)) −→

λ1→∞
0 (12)

This concludes the proof.

30

