
1

Deep Belief Networks are compact
universal approximators

Nicolas Le Roux1, Yoshua Bengio2

1Microsoft Research Cambridge
2University of Montreal

Keywords: Deep Belief Networks, Universal Approximation

Abstract

Deep Belief Networks (DBN) are generative models with many layers of hidden causal

variables, recently introduced by Hinton et al. (2006), along with a greedy layer-wise

unsupervised learning algorithm. Building on Le Roux and Bengio (2008) and Sutskever

and Hinton (2008), we show that deep but narrow generative networks do not require

more parameters than shallow ones to achieve universal approximation. Exploiting the

proof technique, we prove that deep but narrow feed-forward neural networks with sig-

moidal units can represent any Boolean expression.

1 Introduction

Sigmoidal belief networks are generative probabilistic models with hidden variables

organized in layers, with each hidden variable conditionally binomial given the values

of variables in the layer above, and the conditional probability taking the form of a

traditional sigmoidal neuron Neal (1992). Upper layers represent more “abstract” con-



cepts that explain the input observation x, whereas lower layers are expected to extract

“low-level features” from x.

Deep Belief Networks (DBN) Hinton et al. (2006) are particular sigmoidal belief

networks for which a clever and successful learning algorithm has been proposed, us-

ing as a building block a Restricted Boltzmann Machine (RBM) Smolensky (1986);

Freund and Haussler (1991), representing one layer of the model. Although computing

the exact log-likelihood gradient of an RBM is intractable, RBMs have been success-

fully trained using estimators of the log-likelihood gradient such as the Contrastive Di-

vergence algorithm Hinton (2002); Hinton et al. (2006) and the persistent Contrastive

Divergence algorithm Tieleman (2008). The algorithm proposed in Hinton et al. (2006)

to train a DBN is a greedy layer-wise training algorithm in which the k-th layer is first

trained as an RBM modeling the output (samples from the posterior) of layer k−1. This

greedy layer-wise strategy has been found to work for other similar unsupervised mod-

els for deep architectures Bengio (2009), based on improved auto-encoder variants Ben-

gio et al. (2007); Ranzato et al. (2007); Vincent et al. (2008). One of the motivations

for deep architectures is that they can sometimes be exponentially more efficient than

shallow ones in terms of number of elements needed to represent a function. More pre-

cisely, there are functions that can be represented compactly with a neural network of

depth k but that would require exponential size (with respect to input size) networks of

depth k − 1 Hastad and Goldmann (1991); Bengio (2009). This begs the question: can

we have guarantees of the representational abilities of models with potentially deep ar-

chitectures such as DBNs? Sutskever and Hinton (2008) showed that a deep but narrow

DBN (with only n+1 units per layer and n binary inputs) can represent any distribution

on its input, with no more than 3× 2n layers. Unfortunately, this makes the number of

parameters on the order of 3(n + 1)22n, larger than the number of parameters required

by a single level but very fat DBN (i.e. an RBM), which is on the order of n2n. This is

the starting point for this paper.

The main results are the following. If n is a power of 2, i.e. n = 2t, then a Deep

Belief Network composed of 2n

n
+ 1 layers of size n is a universal approximator for

distributions over {0, 1}n. This improves on the 3 × 2n upper bound on the number

of layers already shown in Sutskever and Hinton (2008), and makes the number of

parameters of a DBN universal approximator no worse than the number of parameters

2



of a single RBM. It remains to be shown whether this is also a lower bound on the

number of parameters required to achieve universal approximation. If it were true it

would imply (as we expected) that the large efficiency gains one can potentially obtain

with DBNs are not universal but only obtainable for some specific target functions.

Using the same technique, the paper also shows that a deep but narrow feedforward

deterministic neural network can represent any function from {0, 1}n to {0, 1}, a slight

improvement over the result proved in Rojas (2003).

2 Deep Belief Nets

In this section we briefly review the Deep Belief Net (DBN) model as proposed in Hin-

ton et al. (2006), introducing notation for the rest of the paper.

Let hi represent the vector of hidden variables at layer i. The model is parametrized

as follows:

P (x,h1,h2, · · ·h`) = P (x|h1)P (h1|h2) · · ·P (h`−2|h`−1)P (h`,h`−1)

where all the conditional layers P (hi|hi+1) are factorized conditional distributions for

which the computation of probability and sampling are very easy. In Hinton et al.

(2006) one considers the hidden layer hi a binary random vector with elements hi
j and

P (hi|hi+1) =

ni∏
j=1

P (hi
j|hi+1) (1)

with element hi
j a stochastic neuron or unit, whose binary activation is 1 with proba-

bility

P (hi
j = 1|hi+1) = sigm

(
bi
j +

ni+1∑

k=1

W i
jkh

i+1
k

)
(2)

where sigm(a) = 1/(1+exp(−a)) is the usual sigmoidal activation function, the bi
j are

called the biases (for unit j of layer i) and W i is called the weight matrix for layer i. If

we denote h0 = x, the generative model for the first layer P (x|h1) also follows eq. 1

and 2. The joint distribution P (h`,h`−1) of the top two layers is a Restricted Boltzmann

Machine (RBM), described in Hinton et al. (2006). A DBN is thus a particular kind of

sigmoidal belief network where the top level prior comes from an RBM.

3



Figure 1: Graphical representation of a

Deep Belief Network. The connection be-

tween the top layers is undirected and the

connections between all the lower layers

are directed.

3 Gray Code Deep Belief Network

In this section we use one or more Gray code sequences (see section 3.2 for a definition

of such sequences) in order to capture arbitrary discrete distributions with a DBN. This

is inspired by the work of Sutskever and Hinton (2008) in which, by adding layers, one

constructively changes the probability for one of the 2n configurations, so as to produce

the desired distribution. To avoid confusion, we used different terms for probabilistic

and deterministic changes of bits:

• “switch” refers to a deterministic change from 0 to 1 (or from 1 to 0)

• “flip” refers to a probabilistic change from 0 to 1 (or from 1 to 0).

Therefore, we shall say “bit k is switched from 0 to 1” and “bit k is flipped from 0 to 1

with probability p”.

3.1 Overview

Let us assume we are given an arbitrary target distribution p∗ over binary vectors of

size n, which we want to capture with a DBN. The method proposed in Sutskever and

Hinton (2008) is the following:

• Define an arbitrary sequence (ai)1≤i≤2n of binary vectors in {0, 1}n.

• Let the top-level RBM (between layers h3·2n−2 and h3·2n−3) assign probability 1

to a1

4



• Using a specific sigmoid belief network composed of three layers, generate a2

with probability 1− p∗(a1) and a1 with probability p∗(a1) (specific details on the

architecture of such a network are to be found in their paper), yielding the correct

probability for a1. We shall refer to this operation as a “transfer” of probability

mass from a1 to a2.

• The subsequent 3-layer sigmoid belief network acts as follows:

1. If the vector on h3·2n−6 is a2, transfer 1− p∗(a1)− p∗(a2) of its probability

mass to a3.

2. Otherwise, copy the vector on h3·2n−6 to h3·2n−9

• Continue in the same way, transferring each time probability mass from ak to

ak+1 vectors while leaving the other vectors unchanged.

At the end of this procedure, all the mass has been appropriately transferred to the

(ai)2≤i≤2n and the desired distribution p∗ is obtained.

3.2 Using Gray codes for sharing

Following Sutskever and Hinton (2008), all that is required to build a universal ap-

proximator is the ability to transfer probability mass from ak to ak+1 while leaving the

probability of the other vectors unchanged, and this for all values of k. The goal of

the following sections and associated theorems, and one of the contributions of this pa-

per, is to show how, given appropriate sequences (ak)1≤k≤2n , we can implement this

“sharing” in an efficient way, that is using a one-layer sigmoid belief network of size n

instead of a three-layer network of size n + 1.

The sequences we will use are so-called Gray codes, which are sequences (ak)1≤k≤2n

such that

• ∪k{ak} = {0, 1}n

• ∀k s.t. 2 ≤ k ≤ 2n, ‖ak − ak−1‖H = 1 where ‖ · ‖H is the Hamming distance.

where ∪ indicates logical or. There are many such codes Gray (1953).

5



3.3 Single Sequence

Here we go through the 2n configurations in a particular order, following a Gray code,

i.e., such that only one bit is changed at a time.

Let us consider two consecutive layers h and v (that is there is some r such that

h = hr+1 and v = hr) of size n with Wij the weight linking unit vi to unit hj , bi the

bias of unit vi and w a positive scalar.

Let us first quickly remind that, for every positive scalar ε (0 < ε < 1), there is a

weight vector Wi,: and a real bi such that P (vi|h) = (1 − ε)1vi=hi
(that is, the i-th bit

of h is copied to v with probability 1− ε). Indeed, setting:

• Wii = 2w

• Wij = 0 for i 6= j

• bi = −w

yields a total input to unit vi of:

I(vi,h) = 2whi − w . (3)

Therefore, if w = sigm−1(1− ε) = log 1−ε
ε

, we have P (vi = hi|h) = (1− ε).

Having proven this, we move on to the next - less obvious - theorem, in order to

control the transfer of probability mass for one input pattern, with a single added layer.

Theorem 1. Let at be an arbitrary binary vector in {0, 1}n with its last bit equal to 0

and p a scalar. For every positive scalar ε (0 < ε < 1), there is a weight vector Wn,:

and a real bn such that:

• if the binary vector h is not equal to at, the last bit remains unchanged with

probability greater than or equal to 1− ε, that is P (vn = hn|h 6= at) > (1− ε).

• if the binary vector h is equal to at, its last bit is switched from 0 to 1 with

probability sigm(p).

Proof. For the sake of simplicity and without loss of generality, we will assume that the

first k bits of at are equal to 1 and that the remaining n− k are equal to 0, with k < n.

We will now define the weights and biases as follows:

6



• Wnj = w, 1 ≤ j ≤ k

• Wnj = −w, k + 1 ≤ j ≤ n− 1

• Wnn = nw

• bn = −kw + p

The total input to vn is

I(vn,h) = w

(
k∑

j=1

hj −
n−1∑

j=k+1

hj + nhn − k

)
+ p (4)

If h = at, then

I(vn, at) = p (5)

Otherwise, there are two possibilities:

1. hn = 0, in which case I(vn, h) ≤ −w + p

2. hn = 1, in which case I(vn, h) ≥ w + p

Again, if w is greater than sigm−1(1 − ε) + |p| = log 1−ε
ε

+ |p| and h is different

from at, then we have P (vn = hn|h 6= at) > (1− ε).

Summing up, the transformation performed by these parameters is:

• if the vector h is different from at, leave the last bit unchanged with probability

greater than 1− ε,

• if the vector h is equal to at, flip its last bit from 0 to 1 with probability sigm(p).

This concludes the proof.

It is easy to change the parameters so that the flip would be from 1 to 0. We would

simply need to set:

• Wnj = −w, 1 ≤ j ≤ k

• Wnj = w, k + 1 ≤ j ≤ n− 1

• Wnn = nw

• bn = (k − n)w + p

7



This could of course be done with any bit and not just the last one.

We have proven that, for any layer, it it possible to keep all the bits but one un-

changed (with a probability arbitrarily close to 1) and to change the remaining one

(with some probability) only when h matches a certain vector. Consequently, if we

find a sequence of (ai)1≤i≤2n such that the difference between ai and ai+1 is only one

bit, following the proof of Sutskever and Hinton (2008), we will have built a universal

approximator. A Gray code is such a sequence.

3.4 Multiple Sequences

The previous method still requires 2n+1 layers of size n, which brings the total number

of parameters to n2 · (2n +1), approximately n2 times more than the number of degrees

of freedom of the distribution and n times more than the number of parameters required

to model the distribution with a single RBM (see Le Roux and Bengio (2008) for a

proof).

The reader may have guessed where this factor n can be gained: instead of changing

only one bit per layer (of size n), we should be able to change many of them, on the

order of n. It would therefore be useful to build layers able to move from the k-th vector

to the k +1-th vector of n different Gray codes rather than just one. If we manage to do

so, at every layer, n new vectors will have the correct probability mass, making it only

necessary to have 2n

n
layers.

To achieve that goal, we will need to build a slightly more complicated layer. Let

us again consider a sequence of two consecutive layers h and v of size n with Wij the

weight linking unit vi to unit hj , bi the bias of unit vi and w a positive scalar.

Theorem 1 showed that a sequence of two consecutive layers could keep all the

vectors but one unchanged (with probability arbitrarily close to 1) while flipping one bit

of the last possible vector with some arbitrary probability. We will now show that, what

theorem 1 achieved with one vector, can be achieved with two, provided the Hamming

distance between these two vectors is exactly one.

Theorem 2. Let at be an arbitrary binary vector in {0, 1}n, with last bit equal to 0 and

ct the vector obtained when switching the first bit of at. Let p0 and p1 be two scalars

and ε a positive scalar (0 < ε < 1). Then there is a weight vector Wn,: and a scalar bn

8



such that:

• If the vector h is not equal to at nor to ct, the last bit remains unchanged with

probability greater than 1− ε, that is P (vn = hn|h) ≥ (1− ε).

• If the vector h is equal to at, its last bit is flipped from 0 to 1 with probability

sigm(p0).

• If the vector h is ct, its last bit is flipped from 0 to 1 with probability sigm(p1).

Proof. Again, for the sake of simplicity and without loss of generality, we will assume

that the first k bits of at are equal to 1 and that the remaining n− k are equal to 0, with

k < n.

We will now define the weights and biases as follows:

• Wn1 = p0 − p1

• Wnj = w, 2 ≤ j ≤ k

• Wnj = −w, k + 1 ≤ j ≤ n− 1

• Wnn = nw

• bn = −(k − 1)w + p1

The total input to vn is

I(vn, h) = w

(
k∑

j=2

hj −
n−1∑

j=k+1

hj + nhn − (k − 1)

)
+ p1 + (p0 − p1)h1 (6)

If h is equal to at, then

I(vn, at) = p0 since h1 = 1 for at. (7)

If h is equal to ct, then

I(vn, ct) = p1 since h1 = 0 for ct. (8)

Otherwise, there are two possibilities:

1. hn = 0, in which case I(vn, h) ≤ −w + max(p0, p1),

9



2. hn = 1, in which case I(vn, h) ≥ 2w + min(p0, p1).

If w is equal to max(0, log 1−ε
ε

+ max(|p0|, |p1|)), we have

P (vn = 1|h, hn = 0) ≤ sigm(−w + max(p0, p1))

≤ sigm(− log
1− ε

ε
)

= ε

P (vn = 1|h, hn = 1) ≥ sigm(2w + min(p0, p1))

≥ sigm(2 max(0, log
1− ε

ε
+ max(|p0|, |p1|)) + min(p0, p1))

≥ sigm(log
1− ε

ε
)

= 1− ε

Therefore, if h is different from at and from ct, then P (vn = hn|h) ≥ 1 − ε. This

concludes the proof.

Figure 2 shows such a layer.

�
Figure 2: Representation of the layers used in th. 2.

We will now consider n Gray code sequences in parallel, allowing ourselves to

transfer probability mass to n new vectors at each layer.

We will focus on sequences of n bits where n is a power of 2, i.e. n = 2t.

10



Theorem 3. Let n = 2t. There exist n sequences of vectors of n bits Si, 0 ≤ i ≤ n− 1

composed of vectors Si,k, 1 ≤ k ≤ 2n

n
satisfying the following conditions:

1. {S0, . . . , Sn−1} is a partition of the set of all vectors of n bits.

2. For every i in {0, . . . , n−1} and every k in {1, . . . , 2n

n
−1}, the Hamming distance

between Si,k and Si,k+1 is 1.

3. For every {i, j} in {0, . . . , n−1}2 such that i 6= j, and for every k in {1, . . . , 2n

n
−

1}, the bit switched between Si,k and Si,k+1 and the bit switched between Sj,k and

Sj,k+1 are different, unless the Hamming distance between Si,k and Sj,k is 1.

Proof. We will prove this theorem by construction.

Let Gn−t be a Gray code over n − t bits and Gi
n−t the same Gray code where every

vector has been shifted by i bits to the right (the i rightmost bits being at the beginning

of the vector). For instance,

G2 = G0
2 =

0 0

0 1

1 1

1 0

G1
2 =

0 0

1 0

1 1

0 1

The first t bits of every vector in the sequence Si will be the binary representation of i

over t bits. For 0 ≤ i < n
2
, the last n − t bits of Si will be Gi

n−t. For n
2
≤ i < n, the

last n− t bits of Si will be G
i−n

2
n−t . We emphasize that one shall not confuse the index of

the sequence (which runs from 0 to n − 1) with the shift of the Gray code (which runs

from 0 to n
2
− 1). Therefore, no sequence is shifted by more than n

2
− 1 bits to the right.

Here are the four sequences for t = 2:

S0 =

(0 0 0 0)

(0 0 0 1)

(0 0 1 1)

(0 0 1 0)

S1 =

(0 1 0 0)

(0 1 1 0)

(0 1 1 1)

(0 1 0 1)

S2 =

(1 0 0 0)

(1 0 0 1)

(1 0 1 1)

(1 0 1 0)

S3 =

(1 1 0 0)

(1 1 1 0)

(1 1 1 1)

(1 1 0 1)

One can see that condition 1 is satisfied. Indeed, let x be a vector over n bits. Let

i be the value represented by its first t bits. Since 0 ≤ i ≤ n − 1 (because n = 2t),

the first t bits of x match the first t bits of every vector in Si. Then, no matter what its

11



remaining n − t bits are, they will appear exactly once in the code Gi
n−t since such a

Gray code lists all the vectors of n− t bits. Therefore, x will appear exactly once in Si

and will not appear in the other sequences.

Condition 2 is trivially satisfied by construction since, within each sequence, the

first t bits do not change and the last n− t bits form a Gray code.

Since a Gray code only changes one bit at a time, for every k in 1, . . . , 2n−t − 1,

the bit change between the k-th vector and the k + 1-th vector of Gi
n−t and between the

k-th vector and the k + 1-th vector of Gj
n−t is different, unless i− j ≡ 0( mod n− t).

Since 0 ≤ i < n
2

and n
2
≤ n− t for t ≥ 1, we only have i− j ≡ 0( mod n− t) for pairs

of sequences {Si, Si+n
2
}, 0 ≤ i < n

2
. Such sequences share the same Gray code on the

last n− t bits and their first t bits only differ in one position (the first one). Therefore,

condition 3 is also satisfied.

Before proving the last theorem, we will introduce the following lemma, which

gives us the correct probabilities to assign to each vector at each layer:

Lemma 1. Let p∗ be an arbitrary distribution over vectors of n bits, where n is again a

power of two. A DBN with 2n

n
+ 1 layers such that:

1. for each i, 0 ≤ i ≤ n − 1, the top RBM between layers h
2n

n and h
2n

n
−1 assigns

probability
∑

k p∗(Si,k) to Si,1 where the Si,k are the same as in th. 3.

2. for each i, 0 ≤ i ≤ n− 1 and each k, 1 ≤ k ≤ 2n

n
− 1, we have

P
(
h

2n

n
−(k+1) = Si,k+1

∣∣∣h 2n

n
−k = Si,k

)
=

∑ 2n

n
t=k+1 p∗(Si,t)

∑ 2n

n
t=k p∗(Si,t)

(9)

P
(
h

2n

n
−(k+1) = Si,k

∣∣∣h 2n

n
−k = Si,k

)
=

p∗(Si,k)
∑ 2n

n
t=k p∗(Si,t)

(10)

3. for each k, 1 ≤ k ≤ 2n

n
− 1, we have

P
(
h

2n

n
−(k+1) = a

∣∣∣h 2n

n
−k = a

)
= 1 if a /∈ ∪iSi,k (11)

has p∗ as its marginal distribution over h0.

Proof. Let x be an arbitrary vector over n bits. According to theorem 3, there is a pair

(i, k) such that x = Si,k. This DBN is such that, for all i and all k, if h
2n

n
−k = Si,k,

12



then either h
2n

n
−k−1 = Si,k or h

2n

n
−k−1 = Si,k+1. Therefore, to have h0 = Si,k, all the

hidden layers must contain a vector belonging to the i-th sequence. In fact, there is only

one sequence which can lead to h0 = Si,k. It is:

• h
2n

n
−t = Si,t for 0 ≤ t ≤ k

• h
2n

n
−t = Si,k for k ≤ t ≤ 2n

n

The marginal probability of h0 = Si,k is therefore the probability of such a sequence,

which is equal to

p(h0 = Si,k) = P (h
2n

n
−1 = Si,1)

k−1∏
t=1

P
(
h

2n

n
−(t+1) = Si,t+1

∣∣∣h 2n

n
−t = Si,t

)

P
(
h

2n

n
−(k+1) = Si,k

∣∣∣h 2n

n
−k = Si,k

)

2n

n
−1∏

t=k+1

P
(
h

2n

n
−(t+1) = Si,k

∣∣∣h 2n

n
−t = Si,k

)
(12)

=




2n

n∑
u=1

p∗(Si,u)




k−1∏
t=1

∑ 2n

n
u=t+1 p∗(Si,u)

∑ 2n

n
u=t p

∗(Si,u)

p∗(Si,k)
∑ 2n

n
u=k p∗(Si,u)

· 1 2n

n
−1−k (13)

= p∗ (Si,k) (14)

The last result stems from the cancelation of consecutive terms in the product. This

concludes the proof.

This brings us to the last theorem:

Theorem 4. If n = 2t, a DBN composed of 2n

n
+ 1 layers of size n is a universal

approximator of distributions over vectors of size n.

Proof. Using lemma 1, we now show that it is possible to construct such a DBN.

First, Le Roux and Bengio (2008) showed that an RBM with n hidden units can

model any distribution which assigns a non-zero probability to at most n vectors. Prop-

erty 1 of lemma 1 can therefore be achieved.

All the subsequent layers are as follows.

13



• At each layer, the first t bits of hk+1 are copied to the first t bits of hk with

probability arbitrarily close to 1. This is possible as proven in section 3.3.

• At each layer, n/2 of the remaining n − t bits are potentially changed to move

from one vector in a Gray code sequence to the next with the correct probability

(as defined in lemma 1). Each of these n/2 bits will only change if the vector on

hk+1 matches one of two possibilities (cf th. 3), which is possible (cf th. 2).

• The remaining n/2−t bits are copied from hk+1 to hk with probability arbitrarily

close to 1.

Such layers are arbitrarily close to fulfilling the requirements of the second property of

lemma 1. This concludes the proof.

4 Universal discriminative model

In this section we exploit the proof technique developed above in order to prove uni-

versal approximation properties for deep but narrow feedforward neural network binary

classifiers with binary inputs, that is every function from Hn = {0, 1}n to {0, 1} can

be modeled by a feedforward neural network composed of 2n−1 + 1 layers of size

n.

One must note that the universal approximation property of deep and narrow feed-

forward neural networks has already been proven in Rojas (2003), which shows that one

may solve any two-class classification problem using nested convex polytopes, each of

these being modeled by a stack of perceptrons. The final result is that one can model

any function from Rn to {0, 1} using a feedforward neural network, provided that:

• each layer receives one bit of information from the layer below

• each layer is connected to the input.

If we were to build an equivalent network where each layer is only connected to the

layer below, then we would need n + 1 hidden units (n for the input and one for the

extra bit of information provided by the layer below in his architecture) per layer. This

section tries to prove the same property with hidden layers of size n.

14



As in section 3.3, we will first consider a sequence of two consecutive layers h and

v of size n with Wij the weight linking unit vi to unit hj and bi the bias of unit vi. The

model is a sigmoid belief network directed from h to v.

Theorem 5 (Arbitrary projection). Let W0,: be a vector of Rn, b0 a scalar, ε a positive

scalar (0 < ε < 1) and

S =
{
h ∈ Hn

∣∣W T
0,:h + b0 > 0

}
(15)

where Hn is the binary hypercube in dimension n.

Then, for all i, 1 ≤ i ≤ n, there exists a weight vector Wi,: and a scalar bi such that




if h ∈ S, P (vi = 1|h) > 1− ε

if h /∈ S,P (vi = hi|h) > 1− ε

Proof. Let us define:

t1 = min
h∈S

W T
0,:h + b0

t2 = min
h∈Hn

W T
0,:h + b0

Since S is a finite set, t1 is strictly positive. Since S is included in Hn,
t2
t1
≤ 1. Let w

be a positive scalar. Defining the weights and bias as follows:

• bi = w
(

b0
t1
− 1

2

)

• Wii = w
(

W0i

t1
+ 1− t2

t1

)

• Wij = w
W0j

t1
, j 6= i

we have

P (vi = 1|h) = sigm

(∑
j

Wijhj + bi

)

= sigm

(
w

[∑

j 6=i

W0j

t1
hj +

(
b0

t1
− 1

2

)
+

(
W0i

t1
+ 1− t2

t1

)
hi

])

P (vi = 1|h) = sigm

(
w

[
W T

0,:h + b0

t1
− 1

2
+

(
1− t2

t1

)
hi

])

Therefore,

15







if h ∈ S, P (vi = 1|h) ≥ sigm
(
w

[
1
2

+
(
1− t2

t1

)
hi

])

if h /∈ S,P (vi = 1|h) ≥ sigm
(
w

[
t2
t1
− 1

2
+

(
1− t2

t1

)
hi

])

if h /∈ S, P (vi = 1|h) ≤ sigm
(
w

[
−1

2
+

(
1− t2

t1

)
hi

])

The last equation stems from the fact, that if h is not in S, then W T
0,:h + b0 ≤ 0.

Since
t2
t1
≤ 1, 1

2
+

(
1− t2

t1

)
hi is always strictly positive no matter what the value

of hi is. Thus, if h is in S, the argument of the sigmoid is always strictly positive.

If h is not in S and hi = 0, then P (vi = 1|h) ≤ sigm
(
−w

2

)
.

If h is not in S and hi = 1, then P (vi = 1|h) ≥ sigm
(w

2

)
.

When w tends to +∞, these probabilities tend to 1. Therefore, for all ε such that

0 < ε < 1, there exists a scalar C such that, if w > C, these probabilities are larger

than 1− ε.

It is trivial to adapt theorem 5 so that




if h ∈ S, P (vi = 0|h) = 1

if h /∈ S,P (vi = hi|h) = 1

Therefore, using this strategy for 1 ≤ i ≤ n, we can apply the following transfor-

mation at every layer:

• define a vector W0,: and a bias b0

• define S =
{
h ∈ Hn

∣∣W T
0,:h + b0 > 0

}

• choose an h0 in Hn

• for every h in S, map h to h0

• for every h not in S, map h to itself

In the following theorem, and until the last stage, we shall use sets S which contain

only one vector h.

This allows us to prove the following theorem:

Theorem 6 (Universal discriminators). A neural network with 2n−1+1 layers of n units

with the sigmoid as transfer function can model any non-constant function f from Hn

to {0, 1} arbitrarily well.

16



Proof. Let N0 be the number of vectors h such that f(h) = 0 and N1 be the number of

vectors h such that f(h) = 1. We therefore have:

• N0 + N1 = 2n

• min(N0, N1) ≤ 2n−1

Let us assume that N0 ≤ N1 (and, subsequently, N0 ≤ 2n−1). Let h0 be a vector to

be mapped to 0. At every layer, we will pick an arbitrary binary vector h such that

h 6= h0 and f(h) = 0 and map it to h0, leaving the other vectors unchanged. This is

possible using theorem 5. Once all the vectors to be mapped to 0 have been mapped

to h0 (which requires at most 2n−1 layers, including the input layer), the hyperplane

separating h0 from all the other vectors of Hn performs the correct mapping.

5 Conclusion

Despite the surge in interest for deep networks in recent years, little is known about

their theoretical power. We have introduced a proof technique based on Gray codes

that allows to improve on a previous theorem Sutskever and Hinton (2008) regard-

ing the representational power of deep but narrow sigmoidal belief networks (such as

DBNs Hinton et al. (2006)). Instead of 3×2n layers of size n, the bound presented here

involves 2n

n
+ 1 layers of size n (i.e. n2 + n2n + 2n + n parameters). We do not know

if this is the lowest achievable number of layers. Noticing that only half of the units at

each layer may change, we believe this bound could be improved by a factor of 2 or less.

One important thing to notice is that this is, perhaps unsurprisingly, of the same order

of magnitude as the maximum number of parameters required in an RBM to model any

distribution. This brings other, much more complex and yet more interesting questions:

for a given number of parameters, which architecture can best represent distributions of

interest? Is the representational power of DBNs more concentrated around real-world

distributions when one only has access to a limited number of parameters, i.e. a limited

number of training examples?

Finally, exploiting the same proof technique, we also showed that deep but narrow

deterministic networks (with no more than 2n−1 + 1 layers of size n) can represent any

binary classifier on n-dimensional binary vectors.

17



References

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in

Machine Learning, 2, Issue 1.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise

training of deep networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Ad-

vances in Neural Information Processing Systems 19, pages 153–160. MIT Press.

Freund, Y. and Haussler, D. (1991). Unsupervised learning of distributions of binary

vectors using 2-layer networks. In NIPS, pages 912–919.

Gray, F. (1953). Pulse code communication. U.S. Patent 2,632,058.

Hastad, J. and Goldmann, M. (1991). On the power of small-depth threshold circuits.

Computational Complexity, 1, 113–129.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-

gence. Neural Computation, 14, 1771–1800.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep

belief nets. Neural Computation, 18, 1527–1554.

Le Roux, N. and Bengio, Y. (2008). Representational power of restricted boltzmann

machines and deep belief networks. Neural Computation, 20(6), 1631–1649.

Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56,

71–113.

Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2007). Efficient learning of

sparse representations with an energy-based model. In B. Schölkopf, J. Platt, and

T. Hoffman, editors, Advances in Neural Information Processing Systems 19. MIT

Press.

Rojas, R. (2003). Networks of width one are universal classifiers. In International Joint

Conference on Neural Networks, volume 4, pages 3124–3127.

18



Smolensky, P. (1986). Information processing in dynamical systems: Foundations of

harmony theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Dis-

tributed Processing, volume 1, chapter 6, pages 194–281. MIT Press, Cambridge.

Sutskever, I. and Hinton, G. E. (2008). Deep, narrow sigmoid belief networks are

universal approximators. Neural Computation, 20(11), 2629–2636.

Tieleman, T. (2008). Training restricted boltzmann machines using approximations to

the likelihood gradient. In Proceedings of the International Conference on Machine

Learning, volume 25.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and

composing robust features with denoising autoencoders. In Proceedings of the

Twenty-fifth International Conference on Machine Learning (ICML’2008).

19


