A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets

Nicolas Le Roux1,2, Mark Schmidt1 and Francis Bach1

1Sierra project-team, INRIA - Ecole Normale Supérieure, Paris
2Now at Criteo

4/12/12
Large-scale machine learning: large n, large p

- n: number of observations (inputs)
- p: number of parameters in the model
Large-scale machine learning: large n, large p

- n: number of observations (inputs)
- p: number of parameters in the model

Examples: vision, bioinformatics, speech, language, etc.

- Pascal large-scale datasets: $n = 5 \cdot 10^5$, $p = 10^3$
- ImageNet: $n = 10^7$
- Industrial datasets: $n > 10^8$, $p > 10^7$
Large-scale machine learning: large n, large p

- n: number of observations (inputs)
- p: number of parameters in the model

Examples: vision, bioinformatics, speech, language, etc.

- Pascal large-scale datasets: $n = 5 \cdot 10^5, p = 10^3$
- ImageNet: $n = 10^7$
- Industrial datasets: $n > 10^8, p > 10^7$

Main computational challenge: Design algorithms for very large n and p.

Nicolas Le Roux, Mark Schmidt, Francis Bach

Stochastic Average Gradient
A standard machine learning optimization problem

We want to minimize the sum of a finite set of smooth functions:

\[
\min_{\theta \in \mathbb{R}^p} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
\]

For instance, we may have

\[
f_i(\theta) = \log(1 + \exp(-y_i x_i^\top \theta)) + \lambda 2 \|\theta\|_2
\]
A standard machine learning optimization problem

We want to minimize the sum of a finite set of smooth functions:

$$\min_{\theta \in \mathbb{R}^p} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

For instance, we may have

$$f_i(\theta) = \log (1 + \exp (-y_i x_i^\top \theta)) + \frac{\lambda}{2} \|\theta\|^2$$
A standard machine learning optimization problem

We want to minimize the sum of a finite set of smooth functions:

$$
\min_{\theta \in \mathbb{R}^p} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)
$$

For instance, we may have

$$
f_i(\theta) = \log (1 + \exp (-y_i x_i^\top \theta)) + \frac{\lambda}{2} \|\theta\|^2
$$

We will focus on strongly-convex functions g.

Nicolas Le Roux, Mark Schmidt, Francis Bach

Stochastic Average Gradient
Deterministic methods

\[\min_{\theta \in \mathbb{R}^p} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \]

Gradient descent updates

\[\theta_{k+1} = \theta_k - \alpha_k g'(\theta_k) \]

\[= \theta_k - \frac{\alpha_k}{n} \sum_{i=1}^{n} f'_i(\theta_k) \]

- Iteration cost in \(O(n) \)
- Linear convergence rate \(O(C^k) \)
- Fancier methods exist but still in \(O(n) \)
Stochastic methods

\[\min_{\theta \in \mathbb{R}^p} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \]

Stochastic gradient descent updates

\[i(k) \sim \mathcal{U}[1, n] \]

\[\theta_{k+1} = \theta_k - \alpha_k f'_{i(k)}(\theta_k) \]

- Iteration cost in \(O(1) \)
- Sublinear convergence rate \(O(1/k) \)
- Bound on the test error valid for one pass
Hybrid methods

Goal = \ linear rate
and \ O(1) \ iteration \ cost.

\log(\text{excess cost})

\textit{stochastic}

\textit{deterministic}

\textbf{Stochastic Average Gradient}

Nicolas Le Roux, Mark Schmidt, Francis Bach
Hybrid methods

Goal = linear rate and $O(1)$ iteration cost.
Related work - Sublinear convergence rate

- **Stochastic version of full gradient methods**

- **Momentum, gradient/iterate averaging**

- None of these methods improve on the $O(1/k)$ rate

- **Constant step-size SG, accelerated SG**
 - Linear convergence but only up to a fixed tolerance

- **Hybrid methods, incremental average gradient**
 - Linear rate but iterations make full passes through the data

- **Stochastic methods in the dual**
 - Shalev-Shwartz and Zhang (2012)
 - Linear rate but limited choice for the \(f_i \)’s
Stochastic Average Gradient Method

Full gradient update:

\[\theta_{k+1} = \theta_k - \alpha_k \frac{1}{n} \sum_{i=1}^{n} f'_i(\theta_k) \]
Stochastic Average Gradient Method

Full gradient update:

$$
\theta_{k+1} = \theta_k - \alpha_k \frac{1}{n} \sum_{i=1}^{n} f_i'(\theta_k)
$$
Stochastic average gradient update:

\[\theta_{k+1} = \theta_k - \alpha_k \frac{1}{n} \sum_{i=1}^{n} y_i^k \]

- **Memory**: \(y_i^k = f'_{i(k')} (\theta_{k'}) \) from the last \(k' \) where \(i \) was selected.
- Random selection of \(i(k) \) from \(\{1, 2, \ldots, n\} \).
- Only evaluates \(f'_{i(k)} (\theta_k) \) on each iteration.
Stochastic average gradient update:

\[\theta_{k+1} = \theta_k - \frac{\alpha_k}{n} \sum_{i=1}^{n} y_{i}^k \]

- **Memory**: \(y_{i}^k = f'_{i(k')}(\theta_{k'}) \) from the last \(k' \) where \(i \) was selected.
- Random selection of \(i(k) \) from \(\{1, 2, \ldots, n\} \).
- Only evaluates \(f'_{i(k)}(\theta_k) \) on each iteration.

Stochastic variant of incremental average gradient [Blatt et al., 2007]
SAG convergence analysis

- Assume each f'_i is L-continuous, average g is μ-strongly convex.
- With step size $\alpha_k \leq \frac{1}{2nL}$, SAG has linear convergence rate.
- Linear convergence with iteration cost independent of n.

Nicolas Le Roux, Mark Schmidt, Francis Bach
Stochastic Average Gradient
SAG convergence analysis

- Assume each f'_i is L-continuous, average g is μ-strongly convex.

- With step size $\alpha_k \leq \frac{1}{2nL}$, SAG has linear convergence rate.

- **Linear convergence with iteration cost independent of n.**

- With step size $\alpha_k = \frac{1}{2n\mu}$, if $n \geq 8 \frac{L}{\mu}$ then

 $$
 \mathbb{E}[g(\theta_k) - g(\theta^*)] \leq C \left(1 - \frac{1}{8n}\right)^k.
 $$

- Rate is “independent” of the condition number.
 - Constant error reduction after each pass,

 $$
 \left(1 - \frac{1}{8n}\right)^n \leq \exp\left(-\frac{1}{8}\right) = 0.8825.
 $$
Comparison with full gradient methods

- Assume $L = 100$, $\mu = 0.01$ and $n = 80000$:
 - Full gradient has rate $(1 - \frac{\mu}{L})^2 = 0.9998$
 - Accelerated gradient has rate $(1 - \sqrt{\frac{\mu}{L}}) = 0.9900$
 - SAG (n iterations) multiplies the error by $(1 - \frac{1}{8n})^n = 0.8825$
 - Fastest possible first-order method has rate $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.9608$
Comparison with full gradient methods

Assume $L = 100$, $\mu = 0.01$ and $n = 80000$:

- Full gradient has rate $(1 - \frac{\mu}{L})^2 = 0.9998$
- Accelerated gradient has rate $(1 - \sqrt{\frac{\mu}{L}}) = 0.9900$
- SAG (n iterations) multiplies the error by $(1 - \frac{1}{8n})^n = 0.8825$
- Fastest possible first-order method has rate $\left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.9608$

We beat two lower bounds (with additional assumptions):

- Stochastic gradient bound
- Full gradient bound
Experiments - Training cost

Quantum dataset \((n = 50000, p = 78)\)

\(\ell_2\)-regularized logistic regression

![Graph showing the effectiveness of different optimization algorithms (AFG, L-BFGS, pegasos, SAG-C, SAG-LS) with respect to the objective minus optimum and effective passes.](image-url)
Experiments - Training cost

RCV1 dataset \((n = 20242, p = 47236) \)

\(\ell_2 \)-regularized logistic regression

Nicolas Le Roux, Mark Schmidt, Francis Bach

Stochastic Average Gradient
Experiments - Testing cost

Quantum dataset \((n = 50000, p = 78)\)

\(\ell_2\)-regularized logistic regression

Nicolas Le Roux, Mark Schmidt, Francis Bach

Stochastic Average Gradient
Experiments - Testing cost

RCV1 dataset \((n = 20242, p = 47236)\)

\(\ell_2\)-regularized logistic regression

<table>
<thead>
<tr>
<th>Method</th>
<th>Test Logistic Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFG</td>
<td></td>
</tr>
<tr>
<td>L-BFGS</td>
<td></td>
</tr>
<tr>
<td>pegasos</td>
<td></td>
</tr>
<tr>
<td>SAG-C</td>
<td></td>
</tr>
<tr>
<td>SAG-LS</td>
<td></td>
</tr>
</tbody>
</table>

Nicolas Le Roux, Mark Schmidt, Francis Bach

Stochastic Average Gradient
Reducing memory requirements

\[\theta_{k+1} = \theta_k - \frac{\alpha_k}{n} \sum_{i=1}^{n} y_i^k \]

- \(y_i^k \) is the last gradient computed on datapoint \(i \)

- Memory requirement : \(O(np) \)

- Smaller for structured models, e.g., linear models :
 - If \(f_i(\theta) = \ell(y_i, x_i^\top \theta) \), \(f'_i(\theta) = \ell'(y_i, x_i^\top \theta) x_i \)
 - Memory requirement : \(O(n) \)

- We can also use mini-batches

Nicolas Le Roux, Mark Schmidt, Francis Bach

Stochastic Average Gradient
Conclusion and Open Problems

- Fast theoretical convergence using the ‘sum’ structure common in applications.

Open problems:
- Large-scale distributed implementation.
- Determine a tight convergence rate in all cases.
- Apply the method to constrained and non-smooth problems.
- Speed up the method using non-uniform sampling and non-Euclidean metric.
Conclusion and Open Problems

- Fast theoretical convergence using the ‘sum’ structure common in applications.
- Simple algorithm, empirically better than theory predicts.

Open problems:
- Large-scale distributed implementation.
- Determine a tight convergence rate in all cases.
- Apply the method to constrained and non-smooth problems.
- Speed up the method using non-uniform sampling and non-Euclidean metric.
Conclusion and Open Problems

- Fast theoretical convergence using the ‘sum’ structure common in applications.
- Simple algorithm, empirically better than theory predicts.
- Allows line-search and approximate optimality measures.

Open problems:
- Large-scale distributed implementation.
- Determine a tight convergence rate in all cases.
- Apply the method to constrained and non-smooth problems.
- Speed up the method using non-uniform sampling and non-Euclidean metric.
Fast theoretical convergence using the ‘sum’ structure common in applications.

Simple algorithm, empirically better than theory predicts.

Allows line-search and approximate optimality measures.

Open problems:

- Large-scale distributed implementation.
- Determine a tight convergence rate in all cases.
- Apply the method to constrained and non-smooth problems.
- Speed up the method using non-uniform sampling and non-Euclidean metric.