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1 Deterministic vs. Stochastic Gradient Descent

We consider optimization problems of the form

min
x
f(x) :=

1

N

N∑
i=1

fi(x), (1)

where f(x) is convex and its gradient f ′(x) is Lipschitz-continuous with constant L, meaning that for all x
and y we have

||f ′(x)− f ′(y)|| ≤ L||x− y||.
For twice-differentiable functions, these assumptions are equivalent to assuming that the eigenvalues of the
Hessian are bounded between 0 and L.

Deterministic gradient methods for problems of this form use the iteration

xk+1 = xk − αkf
′(xk), (2)

for a sequence of step sizes αk. In contrast, stochastic gradient methods use the iteration

xk+1 = xk − αkf
′
i(xk), (3)

for an individual data sample i selected uniformly at random from the set {1, 2, . . . , N}.
The stochastic gradient method is appealing because the cost of its iterations is independent of N .

However, in order to guarantee convergence stochastic gradient methods require a decreasing sequence of
step sizes {αk} and this leads to a slower convergence rate. In particular, for convex objective functions the
stochastic gradient method with a decreasing sequence of step sizes has an expected error on iteration k of
O(1/

√
k) [Nemirovski, 1994, §14.1], meaning that

E[f(xk)]− f(x∗) = O(1/
√
k).

In contrast, the deterministic gradient method with a constant step size has a smaller error of O(1/k) [Nes-
terov, 2004, §2.1.5]. The situation is more dramatic when f is strongly convex, meaning that

f(y) ≥ f(x) + 〈f ′(x), y − x〉+
µ

2
||y − x||2, (4)

for all x and y and some µ > 0. For twice-differentiable functions, this is equivalent to assuming that the
eigenvalues of the Hessian are bounded below by µ. For strongly convex objective functions, the stochastic
gradient method with a decreasing sequence of step sizes has an error of O(1/k) [Nemirovski et al., 2009, §2.1]
while the deterministic method with a constant step size has an exponential convergence rate. In particular,
the deterministic method satisfies

f(xk)− f(x∗) ≤ ρk[f(x0)− f(x∗)],
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for some ρ < 1 [Luenberger and Ye, 2008, §8.6].
The purpose of this note is to show that, if the individual gradients f ′i(xk) satisfy a certain strong growth

condition relative to the full gradient f ′(xk), the stochastic gradient method with a sufficiently small constant
step size achieves (in expectation) the convergence rates stated above for the deterministic gradient method.

2 A Strong Growth Condition

The particular condition we consider in this work is that for all x we have

max
i
{||f ′i(x)||} ≤ B||f ′(x)||, (5)

for some constant B. This condition states that the norms of the gradients of the individual functions are
bounded by a linear function of the norm of the average gradient. Note that this condition is very strong
and is not satisfied in most applications. In particular, this condition requires that any optimal solution for
problem (1) must also be a stationary point for each fi(x), so that

(f ′(x) = 0)⇒ (f ′i(x) = 0),∀i.

In the context of non-linear least squares problems this condition is equivalent to requiring that all residuals
be zero at the solution, and can be used to show local superlinear convergence of Gauss-Newton algo-
rithms [Bertsekas, 1999, §1.5.1].

Under condition (5), Solodov [1998] and Tseng [1998] have analyzed convergence properties of determinis-
tic incremental gradient methods. In these methods, the iteration (3) is used but the data sample i is chosen
in a deterministic fashion by proceeding through the samples in a cyclic order. Normally, the deterministic
incremental gradient method requires a decreasing sequence of step sizes to achieve convergence, but Solodov
shows that under condition (5) the deterministic incremental gradient method converges with a sufficiently
small constant step size. Further, Tseng shows that a deterministic incremental gradient method with a
sufficiently small step size may have a form of linear convergence under condition (5). However, this form
of linear convergence treats full passes through the data as iterations, similar to the deterministic gradient
method. Below, we show that the stochastic gradient descent method achieves a linear convergence rate in
expectation, using iterations that only look at one training example.

3 Error Properties

It will be convenient to re-write the stochastic gradient iteration (3) in the form

xk+1 = xk − α(f ′(xk) + ek), (6)

where we have assumed a constant step size α and where the error ek is given by

ek = f ′i(xk)− f ′(xk). (7)

That is, we treat the stochastic gradient descent iteration as a full gradient iteration of the form (2) but
with an error ek in the gradient calculation. Because i is sampled uniformly from the set {1, 2, . . . , N}, note
that we have

E[f ′i(xk)] =
1

N

N∑
i=1

f ′i(xk) = f ′(xk), (8)

and subsequently that the error has a mean of zero,

E[ek] = E[f ′i(xk)− f ′(xk)] = E[f ′i(xk)]− f ′(xk) = 0. (9)

2



In addition to this simple property, our analysis will also use a bound on the variance term E[||ek||2] in terms
of ||f ′(xk)||. To obtain this we first use (7), then expand and use (8), and finally use our assumption (5) to
get

E[||ek||2] = E[||f ′i(xk)− f ′(xk)||2]

= E[||f ′i(xk)||2 − 2〈f ′i(xk), f ′(xk)〉+ ||f ′(xk)||2]

= E[||f ′i(xk)||2]− 2〈E[f ′i(xk)], f ′(xk)〉+ ||f ′(xk)||2

=
1

N

N∑
i=1

[||f ′i(xk)||2]− ||f ′(xk)||2

≤ (B2 − 1)||f ′(xk)||2.

(10)

4 Upper Bound on Progress

We first derive a basic inequality for inexact gradient methods of the form (6), when applied to functions f
that have a Lipschitz continuous gradient. In particular, because f ′ is Lipschitz-continuous, we have for all
x and y that

f(y) ≤ f(x) + 〈f ′(x), y − x〉+
L

2
||y − x||2.

Plugging in x = xk and y = xk+1 we get

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+
L

2
||xk+1 − xk||2.

From (6) we have that (xk+1 − xk) = −α(f ′(xk) + ek), so we obtain

f(xk+1) ≤ f(xk)− α〈f ′(xk), f ′(xk) + ek〉+
α2L

2
||f ′(xk) + ek||2

= f(xk)− α(1− αL

2
)||f ′(xk)||2 − α(1− αL)〈f ′(xk), ek〉+

α2L

2
||ek||2.

(11)

5 Descent Property

We now show that, if the step size α is sufficiently small and the error is as described in Section 3, then the
expected value of f(xk+1) is less than f(xk). In particular, we take the expectation of both sides of (11)
with respect to ek, and use (9) and (10) to obtain

E[f(xk+1)] ≤ f(xk)− α(1− αL

2
)||f ′(xk)||2 − α(1− αL)〈f ′(xk),E[ek]〉+

α2L

2
E[||ek||2]

≤ f(xk)− α(1− αL

2
)||f ′(xk)||2 +

α2L(B2 − 1)

2
||f ′(xk)||2

= f(xk)− α(1− αLB2

2
)||f ′(xk)||2.

(12)

This inequality shows that if xk is not a minimizer, then the stochastic gradient descent iteration is expected
to decrease the objective function for any step size satisfying

0 < α <
2

LB2
. (13)
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6 Exponential Convergence for Strongly Convex Objectives

We now use the bound (12) to show that, for strongly convex functions with a minimizer x∗, constant step
sizes satisfying (13) lead to an expected exponential convergence rate. First, use x = xk in (4) and minimize
both sides of (4) with respect to y to obtain

f(x∗) ≥ f(xk)− 1

2µ
||f ′(xk)||2.

and subsequently that
−||f ′(xk)||2 ≤ −2µ(f(xk)− f(x∗)).

Now use this in (12) and assume the step sizes satisfy (13) to get

E[f(xk+1)] ≤ f(xk)− 2µα(1− αLB2

2
)[f(xk)− f(x∗)].

We now subtract f(x∗) from both sides and take the expectation with respect to the sequence {e0, e1, . . . , ek−1}
to obtain

E[f(xk+1)]− f(x∗) ≤ E[f(xk)]− f(x∗)− 2µα(1− αLB2

2
)[E[f(xk)]− f(x∗)]

=

(
1− 2µα(1− αLB2

2
)

)
[E[f(xk)]− f(x∗)].

Applying this recursively we have

E[f(xk)]− f(x∗) ≤ ρk[f(x0)− f(x∗)],

for some ρ < 1. Thus, the difference between the expected function value E[f(xk)] and the optimal function
value f(x∗) decreases exponentially in the iteration number k.

7 O(1/k) Convergence for Convex Objectives

We now turn to the case where f is convex but not necessarily strongly convex. In this case, we show that
if at least one minimizer x∗ exists, then a step size of α = 1

LB2 leads to an O(1/k) error. By convexity, we
have for any minimizer x∗ that

f(xk) ≤ f(x∗) + 〈f ′(xk), xk − x∗〉,

and thus for any β ≤ 1 that

f(xk) ≤ βf(xk) + (1− β)f(x∗) + (1− β)〈f ′(xk), xk − x∗〉.

We use this to bound f(xk) in (11) to get

f(xk+1) ≤ βf(xk) + (1− β)f(x∗) + (1− β)〈f ′(xk), xk − x∗〉

− α(1− αL

2
)||f ′(xk)||2 − α(1− αL)〈f ′(xk), ek〉+

α2L

2
||ek||2.

(14)

Note that

1

2α

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
=

1

2α

(
‖xk − x∗‖2 − ‖xk − αf ′(xk)− αek − x∗‖2

)
= −α

2
‖f ′(xk)‖2 − α

2
‖ek‖2 − α〈f ′(xk), ek〉

+ 〈f ′(xk), xk − x∗〉+ 〈ek, xk − x∗〉 ,
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and using this to replace 〈f ′(xk), xk − x∗〉 in (14) we obtain the ugly expression

f(xk+1) ≤ βf(xk) + (1− β)f(x∗) +
1− β

2α

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+
α(1− β)

2

(
‖f ′(xk)‖2 + ‖ek‖2

)
+ (1− β)α〈f ′(xk), ek〉 − (1− β)〈ek, xk − x∗〉

− α(1− αL

2
)||f ′(xk)||2 − α(1− Lα)〈f ′(xk), ek〉+

Lα2

2
‖ek‖2 .

Taking the expectation with respect to ek and using properties (9) and (10), this becomes

E[f(xk+1)] ≤ βf(xk) + (1− β)f(x∗) +
1− β

2α

(
‖xk − x∗‖2 − E[‖xk+1 − x∗‖2]

)
+
α(1− β)

2

(
‖f ′(xk)‖2 + (B2 − 1)‖f ′(xk)‖2

)
− α(

2− αL
2

)||f ′(xk)||2 +
Lα2(B2 − 1)

2
‖f ′(xk)‖2 .

(15)

Using α = 1
LB2 , we can make all terms in ‖f ′(xk)‖ cancel out by choosing β = 1− 1

B2 because

α(1− β)B2 − 2α+ Lα2B2 = α− 2α+ α = 0.

We now take the expectation of (15) with respect to {e0, e1, . . . , ek−1} and note that (1−β)/α = L to obtain

E[f(xk+1)]− f(x∗) ≤ βE[f(xk)]− βf(x∗) +
L

2

(
E[‖xk − x∗‖2]− E[‖xk+1 − x∗‖2]

)
.

If we sum up the error from k = 0 to (n− 1), we have

n−1∑
k=0

(E[f(xk+1)]− f(x∗)) ≤ β
n−1∑
k=0

(E[f(xk)]− f(x∗)) +
L

2

(
E[‖x0 − x∗‖2]− E[‖xn − x∗‖2]

)
≤ β

n∑
k=1

(E[f(xk)]− f(x∗)) + β (E[f(0)]− f(x∗)) +
L

2
E
[
‖x0 − x∗‖2

]
.

Hence, we have

(1− β)

n−1∑
k=0

(E[f(xk+1)]− f(x∗)) ≤ β (E[f(0)]− f(x∗)) +
L

2
E
[
‖x0 − x∗‖2

]
.

Since E[f(xk+1)] is a non-increasing function of k, the sum on the left-hand side is larger than k times its
last element. Hence, we get

E[f(xk+1)]− f(x∗) ≤ 1

k

k−1∑
i=0

(E[f(xi+1)]− f(x∗))

≤
β (E[f(0)]− f(x∗)) + L

2E
[
‖x0 − x∗‖2

]
k(1− β)

=
2(B2 − 1) (E[f(0)]− f(x∗)) + LB2E

[
‖x0 − x∗‖2

]
2k

= O(1/k).
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